Volatile FPGA design security — a survey

Saar Drimer*
Computer Laboratory, University of Cambridge
http://www.cl.cam.ac.uk/~sd410

Version 0.96, April 17, 2008

Abstract

Volatile FPGAs, the dominant type of programmable logic devices, are used in
space, military, automotive, and consumer electronics applications which require
them to operate in a wide range of environments. The continuous growth in both
their capability and capacity now requires significant resources to be invested in
the designs that are created for them. This has brought increased interest in the
security attributes of FPGAs; specifically, how well do they protect the informa-
tion processed within it, how are designs protected during distribution, and how
developers’ ownership rights are protected while designs from multiple sources are
combined. This survey establishes the foundations for discussing “FPGA security”,
examines a wide range of attacks and defenses along with the current state of in-
dustry offerings, and finally, outlines on-going research and latest developments.

1 Introduction

Field programmable gate arrays (FPGA) are generic semiconductor devices made up of
interconnected functional blocks that can be programmed, and reprogrammed, to per-
form user-described logic functions. Since the early 2000s, FPGA vendors have gradually
absorbed into the FPGAs functions that previously required peripheral devices. 2007’s
FPGAs have embedded processors, giga-bit serial transceivers, clock managers, analog-
to-digital converters, digital signal processing blocks, Ethernet controllers, substantial
memory capacity, and other functional blocks beyond the arrays of basic logic elements
they started out with in the mid 1980s. We are also seeing a process of industry-specific
sub-families within a single family of devices that cater to embedded, DSP, military and
automotive applications; this means that the distribution of the various embedded blocks
is different across family members.

The off-the-shelf availability and reprogrammability make FPGAs competitive with the
generally higher performing application specific integrated circuits (ASIC) when the up-
front (“non-recurring engineering”) costs and development times are not justified. Most

*The author is supported by a grant from Xilinx, Inc.

1

http://www.cl.cam.ac.uk/~sd410

new generations of FPGAs are manufactured using the latest technologies to be as com-
petitive as possible with ASICs in terms of performance, power and price. Against com-
modity application specific standard products (ASSP) (devices that perform a fixed set
of functions) FPGAs compete by being reprogrammable and able to process any number
of functions, not only those which are pre-set. The ability to parallelize operations and
execute customizable functions also makes them performance competitive compared to
sequential microprocessors.

The growth in both capacity and application space of FPGAs has two main security im-
plications. Firstly, today’s FPGA designs represent a significant development investment
which needs to be protected. Secondly, FPGAs are increasingly being used in applica-
tions that require security properties that are either not available today, or that have yet
to be adequately investigated. Both have brought recent attention to the security at-
tributes of FPGAs in the military, automotive, consumer industries, and also the research
community, each with its own requirements and security perspectives.

This document surveys the current state of the FPGA security field with the goal of being
a reference to engineers and researchers interested in the challenges of providing protection
to FPGA designs in both distribution and operation!. As the basis for our discussion, we
will start with defining the FPGA usage model and its participants in Section 2. Possible
attacks are described in Section 3, followed by defenses in Section 4. Section 5 covers
the current state of research and finally, Section 6 deals with issues of trust, adversary
classification, and security metrics.

This survey is primarily about the security of SRAM-based volatile FPGAs and does not,
in most part, cover non-volatile programmable logic devices or one-time programmable
devices. While some of the discussion will apply to non-volatile devices, they should
be considered separately as they have different usage and threat models. They do have
attractive attributes, however, and are generally regarded as more secure, but with a
compromise made on performance and capacity [78]. Finally, many of the issues discussed
in this document are not necessarily exclusive to FPGAs and may apply to other integrated
circuit devices or software. The focus here, however, is to put all those in the perspective
of the FPGA usage model.

2 Usage model

The ability to field-reprogram the FPGA a distinct advantage, but also what exposes it to
exploits. In this section we will discuss the unique usage model of FPGAs, its participants,
and the interactions between them.

2.1 Principals

“A principal is an entity that participates in a security system. This entity can be a
subject, a person, a role, or a piece of equipment, such as a PC, smartcard, or card-
reader terminal” [9, p9]. FPGAs, FPGA vendors, designers, programming cables etc.

n early 2004, Wollinger, Guajardo, and Paar wrote the first comprehensive survey of the topic [122],
which is a good companion to this one.

are principals interacting in a system whose security we are concerned with. With our
security perspective, we can consider their communication as part of the execution of a
security protocol. Introduced below are the principals that partake in the design and
distribution of FPGA products, along with their security requirements?.

FPGA vendor. Altera and Xilinx have traditionally been the leaders of the pro-
grammable logic industry and in constant competition over market dominance, alternating
positions over the past twenty years. In 2005, Xilinx held 50% of the programmable logic
market share, Altera 33% and Lattice at a distant third place with 6% [33]. Every FPGA
vendor introduces a new FPGA family roughly every 12 to 18, each costing many millions
of dollars do design, fabricate, and test for production. The competition is good because
it forces the vendors to be well-tuned to the needs of their customers. It also means that
vendors need to be aggressive yet conservative at the same time when introducing new
families, as failure of one can be devastating to the company. The amount of transistors
that can fit in a die is limited, so he vendors only introduce embedded functions that
are needed by the majority of their customers or several large ones, or are in-line with
a long-term marketing strategy (for example, embedded hard processors, large memory
blocks or structured-ASIC families). Customers must be willing to pay for all the func-
tional blocks on the die (by accepting the price of the FPGA) even if they are left unused.
This is important to remember we consider the addition of security features to FPGAs,
as they must be financially profitable to the FPGA vendors.

Security-wise, FPGA vendors have two dominant concerns. Firstly, they need to pro-
tect their own proprietary designs and technology from being reverse engineered, copied,
exposed, or modified. Secondly, they need to provide their customers means to protect
their own designs throughout the design flow and in the field. Customers’ recent interest
in protecting designs has made security a competitive factor, prompting FPGA vendors
to pay more attention to these issues; the gradual increase in security-related feature
offerings reflects this.

Foundry. All FPGA vendors are fabless, which means that they design the FPGAs but
partner with other companies, called foundries, for manufacturing. They are presented
here as an independent principal since they are crucial to the security of the FPGA
because that it is possible that designs will be modified or stolen during the process of
fabrication. If the foundry is tasked with embedding cryptographic keys, serial numbers
on which a security scheme relies on, this could also be a problem. In the past “trusted
foundries” were established in the country where the devices were designed such that strict
control and supervision was possible. Today, this is significantly harder as advanced
fabrication facilities have migrated to Asian countries where this kind of control by a
foreign government is not possible. To attest to the importance of this, at least as far
as governments are concerned, a 2005 report [116] by the U.S. Department of Defense
discusses the “alarming” rate in which “critical” microelectronics facilities are migrating
to foreign countries.

2In 2002, Kean [55] provided a list of principals in the context of “intellectual property” protection,
which is expanded here to cover all aspects of the design flow.

3

System developer. The FPGA vendor sells the FPGAs, often through distributors,
to the system developer who incorporates it into a product. System developers can be
divided into two groups based on their security needs and views. Using this categorization
we will be able to evaluate the effectiveness of various defenses from their perspective.

e (Clost-conscious. The goal of the commercial product designer is to meet the prod-
uct’s specifications at the lowest cost, while maintaining reliability. Often, there
is a trade-off between system performance and cost and a general tendency by en-
gineers to resist additional components, design delays, and decrease in reliability
that translates into higher maintenance and support costs. The typical life-cycle
of a commercial product is quite short, from months to a few years, and therefore,
its proprietary design and may only need to be protected for that long; after that
period, the system is no longer a worth-while target for attackers. The predominant
threat faced by commercial product designers is the creation of a competing cheaper
product that is derived from the original. Therefore, it is sufficient to make the pro-
cess of stealing the design at least as costly as re-creating it (or slightly harder than
a competing product), while keeping the cost of this defense to a minimum.

e Security-conscious. Government contractors and security-industry system devel-
opers are concerned with protecting designs, methods of operation, and commu-
nications for a substantial length of time — from years to decades — while cost
considerations may be secondary. The security-conscious designer is often inter-
ested in robust, “approved” security mechanisms, based on established protocols
and algorithms. In these applications, cost-performance may be important, but not
at the expense of security and reliability. Some security-conscious designers make
use of older, more mature, and hence more reliable, integrated circuits. Others take
advantage of the most recent technologies that are more resistant to invasive attacks
and increase the entry threshold of potential adversaries due to the higher cost of
equipment and know-how.

It appears that FPGA vendors have a challenge in supplying security features to their
customers: in a single resource-limited device, they would (ideally) like to satisfy both
cost- and security-conscious designers, who have significantly different outlook on security,
and what they are willing to spend for it.

Cores designer. Cores are ready-made functional descriptions that allow system de-
velopers to save on design cost and time by purchasing them from third-parties and
integrating them into their own design. A single third-party core can also occupy the
entire FPGA to create a “virtual” application specific standard products” [55]. Cores
designers sell their cores in the form of hardware description language (HDL) or complied
netlists, while FPGA vendors provide some cores for free (they make the money from
selling the FPGAs), and some designers create free open-source designs available though
sites like http://www.opencores.org. There exists free and commercial cores for nearly
every popular digital function.

An ideal distribution model would enable system designers to evaluate, simulate, and in-
tegrate cores into their own designs while maintaining confidentiality of the cores, limiting

4

http://www.opencores.org

the number of instances made and make every instance operational only on a specific de-
vice. A benefit of this model is that it will also enable a pay-per-use payment structure,
as opposed to blanket licensing, that would enable a greater market for the cores. To
date, there are no mechanisms to enable this “core distribution business” that answers to
all the needs specified above; we will discuss this issue in detail in Section 5.3.

EDA software vendor. Electronic design automation (EDA) tools are used for the
development of printed circuit boards, integrated circuits, FPGA designs, and extensively
used for simulation. The various EDA vendors provide the tools that are used by all the
principals mentioned above with FPGA vendors also being EDA tool suppliers. Therefore,
EDA software vendors play a pivotal role in the FPGA design flow and their contribution
is critical to the security of both the FPGA and FPGA-based products.

System manufacturer. The system developer does not usually have the facilities to
mass produce a product, so therefore, the designs are sent to the system manufacturer
for production and often also for testing. This principal includes all parties involved in
the process of making the system ready for delivery: printed circuit fabrication, assembly
(where components are soldered onto the board), testing, and even packaging.

System owner. This principal possesses the FPGA-based system, which is no longer
under direct control or supervision of its developer. This could be a legitimate user who
purchased the system at a consumer-product store, or a government who obtained it
from a fallen reconnaissance aircraft; both may be malicious (“enemy”), trying to pry
secrets out or circumvent protection mechanisms. Depending on the product, the system
developer may restrict the owner from using certain functions in order to prevent theft
of services, or from executing unauthorized code on the system. For example, set-top
box developers (such as TiVo) profit from providing programming services, not from
supplying the hardware itself. Therefore, they have an incentive to invest in mechanisms
that prevent the theft of these services using their own or other hardware. Some cell phone
manufacturers have mechanisms to prevent users from choosing a network other than the
one they are “supposed” to be locked into. The security-conscious designer may want to
have mechanisms to completely erase or destroy portions of the system when it falls into
the “wrong” hands and perhaps employ the ability to “call home” upon tampering.

Trusted party. In order to reach the security goals of a protocol, a principal that is
trusted by all other principals is often required for storing, processing and transferring
data and keys. It is easy to add a trusted parties to a protocol though they are best avoided
since implementing them in reality is difficult. The centralized nature of a trusted party
makes it vulnerable to denial of service attacks, and a lucrative target for attackers. In
addition, it may not even be possible to find one principal that is mutually trusted by all
others. More practical issues such as location, trusted personnel, physical security and so
on are also problematic.

packaging

FPGAvendor foundry facility FPGA vendor
(design) (mask) [rPeal |+
 Tfies) P Ufiles J P ['die | | 7| Frea |
s | B I R |

Y Yy | i | ayu

: : : y : : : ;
(‘software): | iffabricaton): | | 1c | final test
§ flow § :{_process): : package |:

! Sl ' Ll) O

mask _ FPGA _ _ distribution
(files) g(wafer)g ! FPGA g network

design of FPGA assembly
FPGA manufacturing

Figure 1: Simplified depiction of the FPGA design, manufacturing, packaging, and testing
processes.

2.2 Design and manufacturing flow

Figure 1 shows a simplified design flow of an FPGA. The design files (mostly HDL) are
processed by software tools to produce a netlist, which is then laid-out to provide the
physical representation of gates and transistors. From the layout, files describing the
“mask sets” used to manufacture the device are created and delivered to the foundry
where they are physically made into “wafers” (this is a simplification, masks and other
intermediate steps may not necessarily be performed by the foundry, but by another
principals). The wafers are then tested for good die, which are identified and marked,
and then sent for assembly where the good die are cut and attached to a carrying package.
Finally, these packaged die are sent back to the FPGA vendor for final testing before they
are distributed.

Figure 2 shows the design and manufacturing processes of the system developer who uses
an FPGA in his product. It is not meant to be a complete description, but rather to
provide the points at which principals interact. It is important to review these processes
as every attack or vulnerability we will discuss can be placed at one or several points
of this model. In the development phase, the system developer combines internally- and
externally-designed cores that describe the intended logic functions of the FPGA. At this
stage, the system in which the FPGA operates is also developed. The software flow, as
shown in Figure 3, starts with HDL synthesis that optimizes and translates the func-
tional description according to the resources available in the target FPGA architecture
(e.g. Stratix look-up table, Spartan multiplier) into a netlist. Netlists contain a descrip-
tion of the instantiated primitives and the connections between them, usually in the
standardized electronic design interchange format (EDIF). Synthesis tools are available
from several EDA vendors, not necessarily from the FPGA vendor of the target device,
unlike the tools used for the rest of the process. The information contained in the netlist
is then mapped/fitted to the specific primitives of the architecture and then those are

6

core designer system designe

' (HDL code) . : feld [
: E reconfiguration { ItStream

external IP

manufacturing
facility

.....................

[PROM ||
Y |:> :
FPGA FrGa ||| 7 || FPGA
 system system fielded
development manufacturing system

Figure 2: The development, manufacturing, and distribution of an FPGA-based system.
The system developer must be assisted by several other principals such as manufacturers,
and cores and EDA vendors. At the end of the development cycle the product is in the
system owner’s hands.

functional simulation static timing analysis

map/fit,

synthesis place & route encoding

Figure 3: Expanded view of the software flow used to process a functional description in
a high-level language into a bitstream file that is programmed into the FPGA to have it
perform this functionality.

placed and routed to a particular target device to produce a placelist®, where the specific
route of every interconnect and physical placement of all primitives are described. The
placelist is then encoded to produce a bitstream file that when loaded onto the FPGA
establishes the routing to and from all the instantiated elements by setting the state of
memory cells, pass gates, and routing switches. The bitstream also sets the attributes of
all instantiated blocks such that once it is loaded, the FPGA performs the logic functions
that were initially described in HDL. As SRAM FPGAs are volatile, they must receive the
bitstream on every power-up from an external source, which is traditionally a non-volatile
(NV) device, EEPROM or Flash, placed nearby on the printed circuit board. The design
is simulated at the HDL, netlist, and post-PAR stages, and is also verified for correct
operation when “executed” on the FPGA itself in its intended hardware setting. Static
timing analysis takes into account the architecture and actual delays after the place and
route process in order to verify that timing violations, such as of setup and hold timing
allowances, do not occur. When the prototyping process is done, the system is manu-

3This new name is used in order to distinguish the information described in these files from the
information described in netlists.

factured, the bitstream is programmed into the device or NV storage and tested before
being shipped. In the field, the finished product is in the hands of the system owner
and thus, no longer under the control of the designer. Field reconfiguration, as the name
suggests, allows the user or system developer to reprogram the FPGA while it is in the
field. For example, a firmware upgrade to a digital camera may be done remotely by the
user plugging it into an Internet-connected PC, or an upgrade to a car’s processor be done
by a service technician at a service station.

3 Attacks

Security is an arms-race. Defenses against malicious tampering or use are put in place
only to be broken and later be replaced by other, hopefully better, measures. Smartcards
and microcontrollers have been in the midst of such a race for the past two decades,
starting with naive, if present at all, security mechanisms and incrementally improving
as exploits were discovered; examples are the work by Anderson, Kommerling, Kuhn,
and Skorobogatov [10, 11, 61, 96]. The interest in finding vulnerabilities in smartcards
emerged in the mid-1990s when they started being used for pay-TV application, and later
for banking; Anderson et al. [12] provide a recent survey of the security properties of
cryptographic processors.

We are now seeing the beginning of such an arms-race for FPGAs. With FPGAs being
used in more applications that require security features, and as these designs become more
valuable, attackers search for vulnerabilities and developers for defenses. This section
examines possible attacks against FPGAs; a subset of those are unique to FPGAs though
most apply to other devices and systems but are considered here for their relevance to
FPGAs. The first few attacks are closely related to the usage model, followed by attacks
on the FPGA while it is operating, then physical attacks, ending with system-level attacks.

3.1 Cloning, overbuilding fraud, and mislabeling

FPGAs are generic, which means that a bitstream made for one device can be used in any
other of the same family and size. As such, attackers can, and do, clone bitstreams by
recording them in transmission to the FPGA and use them in other systems or products,
usually cheaper clones that compete with the originals. Since cloning requires no more
than a logic analyzer and a competent technician, it is considered to be the most common
security vulnerability of volatile FPGAs. The attacker, who does not need to understand
the details of the design regards it as a black-box, and only needs to invest in copying
the circuit board the FPGA is mounted on, saving on the significant development costs.
The original system developers have two main concerns with regards to cloning. Firstly,
cloned systems take hurt the bottom line after a significant development investment, and
secondly, if the clone is marked as the original the system developer suffers a reputation
and support loss because the fake is almost universally of poorer quality. Since this is the
path of least effort for the attacker, an increase in cost for a successful attack may act as
an effective prevention mechanism to make cloning unprofitable, at least for a while.

The electronic industry has been facing increased amounts of counterfeit hardware in the
last decade, mostly coming from Asia. Aside from cloning of systems, overbuilding or run-

8

on fraud is a major concern to many big companies. When a product is manufactured
at a third party facility that fabricates, assembles and tests the hardware before it is
shipped to the customer, it may manufacture more than the ordered quantities and sell
the excess without incurring development costs. They may even sell the designs themselves
(PCB layout, bitstreams) to competitors. To avoid this, companies qualify facilities as
“trusted” and supervise/audit them, but this is hard to do in many countries, and may
be unaffordable for small companies.

Mislabeling of FPGAs is also a problem for both FPGA manufacturers and system devel-
opers. Modifying or erasing markings on an IC package is trivial, and system designers
have been doing so for years to make the reverse engineering of a system slightly more
difficult. But when FPGAs are not purchased through authorized distributors?, how can
the buyer be sure that the packaging’s markings match what is inside the package? If it
is a completely different device, or even a smaller FPGA family member, that would be
quite simple to verify, albeit only after the purchase. Speed grades are harder to measure,
though, and a slower die may be marked and sold as faster ones for a premium. There
is no way for the buyer or seller to really know what is under the package, aside from
programming it with a bitstream and observing correct results, though for verifying the
speed is more complicated. For commercial companies it is probably safest to buy devices
from the vendors or their distributors rather than on-line, though for hobbyists that only
need small quantities for cheap, the risk may be worth it.

Numbers for these types of fraud are hard to come by as companies are not ready to
disclose their losses unless they must. An industry consortium of large hardware devel-
opment companies called the Alliance for Gray Market and Counterfeit Abatement has
estimated that in 2006 [6] one in ten purchased products were fake either by over-building
or cloning. These types of fraud are hard to prevent, especially when they occur in places
where ownership rights are not enforced. We will discuss some counter measures against
the issues above in section 4.

3.2 Reverse engineering the bitstream

We can define bitstream reversal as the transformation of an encoded bitstream into a
functionally equivalent description of the original design. If we look back to Figure 3 it is
reverse the process from bitstream back to HDL or netlist. Partial bitstream reversal can
be further defined as the extraction of data from the bitstream, such as keys, BRAM/LUT
content, or memory cell states, without reproducing full functionality. Reverse engineer-
ing is legal — with some restrictions — in many countries for interoperability reasons or
discovery of infringement of patents or other rights [79]. Full bitstream reversal would, of
course, reveal the entire design and the data could be used to produce another bitstream
which is completely different from the original such that it would be hard to prove in-
fringement. Keys hidden in the bitstream would also be compromised, and if the attacker
is after determining which cryptographic algorithm is used, partial reversal can also be
useful.

In the early 1990s, start-up NeoCAD has created complete FPGA design development
tools for various vendors’ FPGAs. Contrary to common belief, and according to Xilinx [69,

4Obsolete devices can still be found on-line years after the manufacturers abandoned them.

9

113], NeoCAD did not in fact reverse engineer the bitstream, but rather, the bitstream
generation executable so that their tools could generate compatible bitstreams for Xilinx
FPGAs. In 1995 NeoCAD was acquired by Xilinx to become its software division. In the
late 1990s, start-up Clear Logic was able to use Altera’s software-generated bitstreams
to produce pin-compatible, smaller, cheaper, laser-programmable ASICs (they were also
more secure since they did not require an external bitstream source). Altera subsequently
sued for damages while requesting the halting of Clear Logic’s operations. In 2001, Clear
Logic was barred from asking its customers to use Altera’s software tools since it violated
their end-user license agreement (EULA), and in late 2005, Altera won the case and was
awarded damages [8, 117]; Clear Logic had already ceased operations by 2003. Although
both cases involved the generation of compatible bitstreams, neither company was able to
completely reverse engineer them to obtain the original functional description. NeoCAD
reverse engineered a binary executable and Clear Logic used existing bitstreams to laser-
program devices made from reverse engineering the FPGA’s mask sets. We must also
remember that compared to today’s FPGAs, the ones of NeoCAD and Clear Logic’s time
were much less sophisticated; so even if they did reverse engineer bitstreams, the task
would have been considerably easier than doing something comparable today.

The bitstream’s encoding is largely undocumented and obscure, but not encrypted or
confidential in a cryptographic sense, with FPGA vendors keeping this encoding a secret
as they do for the chip’s own design and layout information. As we shall see in Section 4.3,
several design protection schemes rely on the continued secrecy of this encoding with
vendors having some commitment to keeping it this way. The obscurity, complexity, and
size of the bitstream makes the reverse engineering process difficult and time consuming,
though theoretically possible. There are no reports of successful reversal of modern FPGA
bitstreams as defined above or even a cost estimate that is backed up by data and empirical
analysis. The possibility of legal action is certainly an effective deterrent in academic and
commercial environments, although for some organizations and in certain countries, these
are less of a concern. The incentives for full reversal increases proportionally with the
value represented in bitstreams and with the increased use of FPGAs, and since there is
a rapid growth in both, we can expect much more activity in this area.

Extracting RAM and LUT content from bitstreams is not new (see Ziener et al. [24],
devices’ datasheets, and vendors’ own tools). The harder part of the process, however,
is to automate the process of converting the placelist to a netlist from which the original
functional design can be extracted. A topical Internet search yields quite a few hits for
projects and services, though most of which seem to be half-baked or stale, with companies
providing such a service making claims that are hard to verify. The one exception is
“ULogic”, a “free software project aimed at netlist recovery from FPGA closed bitstream
formats” [115]. Ulogic’s developers Note and Rannaud have produced a report [83] in
which they describe a tool they developed can convert Xilinx’s bitstreams into placelists.
The Xilinx Design Language (XDL) is a largely undocumented plain text representation of
placelists (which are otherwise in unintelligible form) supported by the Xilinx tools from
at least ISE version 4.1i. Using the XDL, developers can directly manipulate placed and
routed designs, and even bypass the entire software flow to create XDL representations
from scratch. From XDL, the files can be converted back to a placelist and encoded to
a bitstream. This allows the iterative process of producing an XDL design, converting it
to a placelist and then to a bitstream; by changing single bits, routing and settings at

10

a time, one can create a database that correlates placelist data to bitstream bits. Note
and Rannaud have simply automated this process to create a “de-bit” tool in addition
to “xdI2bit”, which is a bitstream generation tool that is claimed to be equivalent to
Xilinx’s “bitgen” for some device families, but is much faster. The authors rightly assess
the security risks to deployed systems due to their development by stating that the step
of “making sense” of the data is still missing, namely, the full reversal to a “true netlist”.

The eventual goal of the Ulogic project is producing a netlist, and there may be less public
efforts with similar aims; the increased value embodied in bitstream will inevitably drive
more people and organization to invest time to accomplish automated full reversal. If
reverse engineering is a concern, or thought to be within reach of a potential adversary, it
is probably prudent to no longer rely on bitstream encoding, even though it is still unclear
what is the actual cost of full reversal. Certainly, hiding keys in look-up tables and RAMs
is not a good strategy because it only requires a partial reversal and basic knowledge of
the bitstream’s construction. In Section 4 we will discuss some solutions that increase the
efforts required to be invested by an attacker.

3.2.1 Open formats and hardware

The “open hardware” design community’s discussion [57, 91] on FPGAs, and of other open
format matters, is quite active and is worth noting in this context. Open hardware advo-
cates are pushing towards a hardware equivalent of the software open source efforts and
seeking manufacturers’ support. The dominant argument is that open bitstreams and
architectures would enable third parties — perhaps open-source — to develop vendor-
independent tools that may include support for unique functions and languages otherwise
not made available by the vendors’ tools. Megacz [75] demonstrated this by the creation
of a complete open-source application programming interface (API) for bitstream manip-
ulation for an Atmel FPSLIC FPGA, after its configuration bitstream format was posted
on the comp.arch. fpga Usenet newsgroup in late 2005 [39]. One of Ulogic’s stated goals
is proving to FPGA vendors that third-party tools can be better than their own, demon-
strated by their nimble bitstream encoder. Up to now FPGA vendors have been resisting
this approach by mostly staying out of the debate, with the rare exception of the Xilinx
XC6200 FPGA in 1997. This is firstly, in order to avoid supporting people who create
their own bitstreams and use home-grown tools; this argument can be easily dismissed,
though discrimination for supporting the hardware based on certain software tools is not
going to be easy, and bad for public-relations, so it is not that simple. Secondly, due
to fear of competition with their own software tools and loss of control over how their
devices are used. Lastly, and most importantly, the “openness” will also require revealing
proprietary information, including portions of the architecture, which is the edge vendors
have over one another and which they cannot afford to lose. But it may simply be that
there is no business opportunity there, as the most relevant consumers of FPGAs are large
companies who prefer to get the whole package, including support, accountability, and
regular updates. Business motives dictate that appeasing the occasional researcher and
open-source advocate is not worth the risk to the bottom-line. In 1998, however, we saw
Xilinx release the JBits API [41], which allowed users to directly manipulate bitstreams.
It supported only a few device families and was not very convenient to use, but it marked
a step in the direction of openness that would enable the creation of independent tools.

11

JBits was quite extensively used by academic researchers and was updated only to the
Virtex-1I family and it seems to have been abandoned since.

3.3 Readback

Readback is the process of retrieving a snapshot of the FPGA’s current state while it is still
in operation. Upon request, the FPGA sends the snapshot that includes configuration,
look-up tables, and memory contents to the host PC, or other device, via the configuration
port. This image is different from the original bitstream by missing the header, footer,
initialization commands, and no-ops; of course, the dynamic data in LUTs and BRAMs is
also different from their initialized state. Readback is a powerful characterization tool in
the verification and production testing of the FPGA by the vendors, and also allows the
system developer to verify the correctness of the design as it is operating on the FPGA
itself.

If enabled, however, an attacker can readback the design, add the missing static header
and footer and use it in another device, re-program the FPGA with a modified version,
or reverse engineer it. It also enables an active “readback difference attack” where the
attacker is able to observe signal changes on an individual clock-cycle basis to bypass
defense mechanisms. Consider the case where a functional core is waiting for an enable
signal from an authentication process. If the adversary has control over the input clock,
he can take a snapshot before the signal is set, clock the design, and then take another
snapshot. Through a relatively easy iterative process of comparing the snapshots, the
attacker can determine which bits are required to be changed in order to modify the state
of signals. Then, the original bitstream can be modified to have the enable signal asserted
permanently, subverting the defense. In contrast, readback can also be used as a defense
mechanism by providing indications of tampering, such as in the case of ionizing radiation
attack described in the following section.

Xilinx provides a bitstream bit for disabling readback, but it can be easily found. How-
ever, when bitstream encryption is used, multiple, majority-voted, disabling registers are
activated within the FPGA to prevent readback [70] [123, User Guide 071]. Lattice de-
vices also disable readback when bitstream encryption is used [66, Tech. Note 1109]. In
theory, these disabling bits can be located via invasive attacks, but there is no evidence
that this has been accomplished or even attempted. Altera’s devices do not have readback
capabilities and are therefore not vulnerable to this type of attack.

3.4 Side-channels

Side-channel attacks rely on device-external measurable manifestations of internal pro-
cesses to deduce secret data or modes of operation by exploiting the implementation rather
than the algorithmic construction. The challenge for designers interested in preventing
this analysis is the isolation of internal operations of integrated circuits from their envi-
ronment as they interact with other devices, and consume and emanate energy in the form
of electromagnetic and heat radiation. Described below are three types of side-channel
attacks and their relevance to FPGAs.

12

3.4.1 Power analysis attacks

Integrated circuits consume power in two ways. Dynamic power consumption is due to
CMOS gates changing state while parasitic and load capacitance are charged or discharged
according to the logic transition, 0 — 1 or 1 — 0, respectively; this also includes the
brief low impedance period caused by both the p- and n-mos transistors simultaneously
conducting during the transition. A simple dynamic power consumption model for a
CMOS gate is:

chload"/s2 fA

upply

where Cloaq is the load capacitance of the gate, which includes wire, parasitic and output
capacitance, that need to be charged or discharged with every transition; Viupply is the
supply voltage to the gate; f is the operating frequency; and A is the probability of a
0 — 1 or1l — O transition. Standaert et al. [100] describe a simple experiment that
confirms this model on an FPGA. To obtain power trace samples, most of the literature
describe measuring the voltage across a low-value resistor placed between either the cir-
cuit’s power or ground, and the respective external power supply terminals; the exception
is Bucci et al. [17] who suggest an active sampling circuit to enhance the quality of sam-
ples. Shang et al. [94] provide a thorough analysis of the dynamic power consumption of
a 150 nm Xilinx Virtex-II FPGAs by looking at the power contribution of resources along
a signal path. Their results show that about 60% of dynamic power dissipation is due to
interconnect routing (the effective capacitance of driven wires), 16% to logic, and 14% to
clocking resources.

Static power consumption is the power consumed when the circuit’s gates are not changing
state. Shang et al. estimated that for a 150 nm FPGA, 5-20% of the total consumption is
static and is due to gate leakage. Gate leakage has dramatically increased for 90 nm and
65 nm transistors built for high frequencies, often accounting for a larger portion of total
consumption than dynamic power. This leakage is due to the decreasing dimensions of
the transistors, and the reduced threshold voltage, which cause relatively more current to
flow between the source and drain terminals and through the gate oxide. This leakage is
also very sensitive to temperature variations, and therefore, not uniform across the die, or
in time, and may correspond to switching activity of the circuit. Kim et al. [58] provide an
excellent introduction to the issues associated with static power consumption. The smaller
dimensions have an effect on dynamic consumption as well since Vyypply is reduced and the
capacitance are smaller, and the interconnects are shorter, resulting in less consumption;
albeit, in general, there are more transistors switching as there are more transistors per
device. Up to now static power consumption has been largely ignored, though it may be
interesting to examine how it contributes to the analysis by providing data dependent
information.

Analysis of the current consumption patterns of an integrated circuit may reveal informa-
tion about the specific data it is processing, with the most common target is finding the
key used in a cryptographic operation. In 1999, Kocher et al. [60] introduced two types
of power analysis, simple (SPA) and differential (DPA). With SPA the attacker directly
searches power traces for patterns such as algorithmic sequences, conditional branches,
multiplication, exponentiation, and other signatures that allow the inference of key ma-
terial. DPA compares acquired traces with a statistical power consumption model that is

13

tailored to the target device and specific implementation. This model is based on prior
knowledge or analysis of the device which is then enhanced by many recorded samples
of controlled operations, for example, by processing known plaintexts with known keys.
This way, even if the implementation details are not fully known, the attacker can infer
key material based on controlling single bit changes during an encryption. While attack-
ing a device, the model enables the attacker to iteratively guess candidate key bits and
obtain statistical correlation between model and measurement. The statistical analysis
is required to increase the signal-to-noise ratio such that a candidate guess is distinct
from the samples; if noise is present, more samples are required to reach that distinction,
but most noise sources and patterns can be modeled such that they can be sufficiently
removed. In some cases, even a small number of known bits can make it possible to mount
a brute force search for the remainder.

Most power analysis research to date has been done on microprocessors, such as smartcard
ICs, for which a model is relatively easy to construct and power traces are simple to obtain
due to their sequential and slow operation. Mangard et al. [73] provide a comprehensive
introduction to power analysis techniques for smartcards. Power analysis of FPGAs has
started receiving increased interest since 2003 with Ors et al. [85] and Standaert et al. [99]
being the first to examine the possibility of successful attacks. Ors et al. described a
power analysis platform for examining Xilinx’s 220 nm Virtex device, with a successful
SPA attack on an elliptic curve implementation operating in isolation. The research of
Standaert et al.on the same Virtex FPGA has shown that SPA is not practical for most
paralleled cryptographic implementations when many concurrent operations are running
on a single device. DPA, however, was deemed to be possible, and within a year Stan-
daert and co-authors [100, 101] demonstrated a potentially successful attack based on
statistical correlation techniques against an implementation of the Advanced Encryption
Standard (AES) and Data Encryption Standard (DES). The investigation showed that
the pipelining of the cipher does not protect against DPA since operations are separated
into registered states and are thus better observed in the power traces. However, an un-
rolled implementation, where each round is implemented on its own for faster throughput
(at the expense of more resources), was shown to measurably increase the efforts of a
would-be attacker. This is because all encryption/decryption rounds are run concurrently
and, with the key unknown, the contribution to the power trace is effectively random
noise that cannot be predicted and easily removed during analysis. In practical scenarios
the cryptographic operation would be but a small subset of all the concurrent operations
on the FPGA, all contributing noise. In 2006, Standaert et al. [102] analyzed the power
signature of isolated pipelined structures on a 180 nm Spartan-II FPGA, improved their
previous results from [100], and confirmed some of the results of Shang et al.They also
concluded that pre-charging buses with random values to mask transitions, at the expense
of resources and throughput, amounts to added difficulty to an attacker, but should not
be relied on as a single solution against power analysis.

Power analysis attacks could be made harder if operations that depend on secret data have
the same power signature as ones that do not; achieving this, however, is incredibly chal-
lenging and the research community is constantly evaluating and critiquing new and old
defense techniques. Standaert et al. [103] provide a survey of currently suggested defenses
against power analysis attacks, namely, time randomization, noise addition, masking, and
dynamic and differential logic, with the conclusion that no single solution can eliminate

14

the susceptibility to power analysis attacks. Messerges [76] also surveys the weaknesses of
power analysis countermeasures. Tiri and Verbauwhede [112] proposed an FPGA-specific
countermeasure called wave dynamic differential logic (WDDL) synthesis. Using differ-
ential logic and pre-charging of the gates, this method increases the resistance to DPA
by making power dissipation independent of logic transitions with the disadvantage of
increasing circuit size and lowering the operating frequency. This would make a power
analysis attack very difficult but though in practice, uncontrolled manufacturing varia-
tions prevent the interconnects from perfectly matching each other so there will always
exist some measurable variability (we will see how these variations are put to good use
for PUFs in Section 5.1).

Power analysis in an attacker controlled environment, such as in the cases above, is
essential for our understanding of the vulnerabilities FPGAs are exposed to. However, in
order to provide some context, below is a list of some of the challenges facing an attacker
targeting a modern FPGA system in practice.

e Familiarity with implementation details. Most of the FPGA attacks described in
the literature use some knowledge of specific implementation details to increase the
likelihood of success. This will almost universally be untrue when attacking a real
system because every implementation is different. It would be interesting to how
well some attacks succeed against a completely unknown cipher implementation.
However, the attacker has the advantage with FPGAs (compared with ASICs) in
that he has one available to create a good power consumption model.

e [solation of target function. In order for the attacker to obtain a correlation with
a model, the noise contributed by concurrent processes must be removed. If these
operations are unknown, this will present challenges to the attacker, although noise
can be statistically removed given the right model. As a designer, a somewhat
costly defense would be to implement an identical cryptographic function operating
in parallel with a different key to inject what is effectively random noise.

o Obtaining high signal-to-noise ratio samples. With today’s FPGAs operating at over
500 MHz, the required measurement equipment is not trivial, and more advanced
techniques than the traditional small resistor are required. Reducing the operating
frequency may not be possible due to detection circuits, and specifically to FPGAs,
their clock managers (such as a “Digital Clock Manager”) set to a particular fre-
quency range. For example, Xilinx’s DCMs have two operating modes for high and
low input/output frequencies, so the bottom threshold can be in the few hundred
MHz (120-550 MHz, depending on multiplier setting [123, DS202, Table 50]). The
attacker must also isolate the signal from the FPGA from the surrounding devices
that contribute noise through the shared ground and power supply. Countermea-
sures may be a detection circuit for clock and temperature tampering, not allowing
the attacker to tamper with the clock’s frequency.

e Probe BGA packages on dense multilayer circuit boards. All high-end FPGAs —
with low-end ones quickly following suit — have a flip-chip ball grid array (BGA)
packaging, the largest having nearly 2000 balls, that physically prevent easy access
to pins while the device is still soldered onto the board. BGA packages necessitate

15

that traces be routed inside internal layers, using blind /buried vias, which increases
the entry cost for an attack. Even if the unencrypted bitstream is copied to an-
other system for analysis, that system still needs to be developed. Relatively cheap
mechanical and electrical mechanisms can be added to the printed circuit design to
make an attack increasingly more expensive; for example, sensitive signals between
devices can be routed in internal printed circuit layers, perhaps sandwiched between
sensor mesh layers.

Finally, the attacker will need to deal with devices manufactured at 90 and 65 nm tech-
nologies, the vulnerability of which to power analysis is still to be investigated. Smartcards
have a simple and standardized interface and can be isolated, making it simple to launch
attacks using “kits” and readily available equipment. In contrast, each FPGA-based sys-
tem interfaces with the FPGA differently and in a much more complex way. This is a
major difference between smartcards and FPGAs, where the former has a simple and
standardized interface. We may be able to conclude that would-be attackers must over-
come considerable challenges before being able to collect power traces, and then even
more trying to analyze them.

3.4.2 Electromagnetic emanation analysis

This side-channel attack relies on circuits producing electromagnetic fields due to the
movement of charge during the execution of internal operations. These fields can be
picked up outside of the device using carefully tuned antennas, even without removing
its packaging. Compromising emanations were known to military organizations since at
least the 1960s, and have been used in electronic warfare since; Kuhn [62] provides the
history and evolution of such attacks along with practical experiments and results from
eavesdropping on computer displays.

Applying electromagnetic analysis (EMA) attacks on integrated circuits has only started
to receive attention from the research community since the late 1990s. In the rump session
of Eurocrypt 2000 Quisquater and Samyde introduced the terms simple and differential
electromagnetic attacks, SEMA and DEMA, as the EM analysis equivalents to power
consumption analysis. A paper then followed [90] describing their techniques and initial
results analyzing microcontrollers. At about the same time, Gandolfi et al. [36] demon-
strated EM analysis on three cryptographic implementations in microcontrollers. Their
results show that if set-up correctly, EMA attacks can be more efficient and produce
better signal-to-noise ratios than their power analysis counterparts. In a comprehensive
analysis Agrawal et al. [3, 4] analyze smartcards and observe that there are two kinds of
emanations, “direct”, which are caused by current flowing along interconnects, and “un-
intended”, caused by electrical and magnetic coupling between wires and components.
The authors were able to exploit these emanations to obtain better results than their
application of power analysis. There is an inherent advantage to electromagnetic attacks
over power analysis in that they can be localized to a particular portion of the chip where
the activity of interest takes place and can be mounted in the device’s original setting.

Carlier et al. [19] have reported the first EM analysis of an AES implementation on a
130nm Altera Cyclone FPGA. Their “square electromagnetic attack” is based on the
square attack [23] which is more efficient than brute force for six rounds or less of AES.

16

This chosen plaintext attack fixes all but one byte of the input and observes the prop-
agation of this byte’s bits throughout the round functions. The authors were successful
in obtaining some key bits by placing an antenna close to the FPGA and using DEMA
techniques; they were also able to distinguish relevant signals from the noise produced by
parallel processes.

De Mulder et al. [26] have reported a successful attack against a special implementation
of an elliptic curve algorithm on a 220 nm Xilinx Virtex 800 FPGA. They used SEMA to
observe key-dependent conditional branching, and DEMA statistical techniques against
an improved algorithmic implementation. A later publication by De Mulder et al. [27]
has more technical details on the DEMA attack. It is interesting to note that localization
considerations were taken into account and that the FPGA was operating at a very low
frequency of 300 kHz. As with the power analysis reports, these implementations ran in
isolation, making the attack environment ideal for the attacker.

In summary, EM analysis is certainly a side-channel that can be exploited by attackers,
though many of the difficulties outlined for power analysis also apply here and require
further research. As Argrawal et al. [5] and others demonstrate, the combination of
power and electromagnetic side-channel analysis may be the best way to improve results.
An interesting aspect that may affect both attacks, and is yet to be explored, is the
distribution of ground and power pins in the package. We discussed down-facing die in
flip-chip packaging, but the arrangement of power and ground pins has also been radically
changed to gain better signal integrity. Traditionally, ground pins were at the center of
the package with power pins in batches around this center cluster. Package and chip
designers now tend to spread power pins across the grid array, and closer to signal pins,
for less inductive and shorter ground return paths. It would be interesting to see if this
makes acquiring good samples, perhaps locally to where the target function is, better or
worse.

3.4.3 Timing analysis

Each data-processing operation takes a certain time to complete and if that operation
depends on secret material such as a key, some information may leak. Conditional branch-
ing, memory access, and algorithmic operations, for example, are often key-dependent in
cryptographic function implementations; analyzing their timing signatures can provide
sufficient number of key bits. A common example of timing attack is when passwords are
checked a character at a time, halting on the first mismatch. Noting the different process-
ing time the attacker can determine the password in just a few attempts. Kocher [59], who
introduced this class of attacks in 1996, and Dhem et al. [28] have shown how practical
these attacks are against microcontroller implementations of cryptographic algorithms.

Observing timing variations through the power traces might not be as effective with
FPGAs because unlike microcontrollers, processes run concurrently. However, timing
can be observed through memory accesses and other interfaces with external devices.
The designer can prevent information leaking through timing variations by making sure
that sensitive operations require the same number of clock cycles to complete; by adding
timing randomization to operations; or, by loading data into internal memory blocks
before processing it. In general, any operation that is observable via the device’s pins
should be checked for timing-related leaks.

17

3.5 Ionizing radiation

Single event upsets (SEU) are “radiation-induced errors in microelectronic circuits caused
when charged particles lose energy by ionizing the medium through which they pass,
leaving behind a wake of electron-hole pairs” [80]. SEUs in CMOS devices are gener-
ated by atmospheric and ambient ionizing radiation consisting of neutrons, protons and
heavy ions and also from alpha particles emitted from materials used for integrated circuit
packaging [53, 82] [123, White Paper 208]. An SEU may cause a transient pulse called a
“single transient effect” resulting in delay faults [35] and may also cause a memory bit to
flip state; multi-bit upsets due to a single event are also possible with decreasing proba-
bilities. SEU flips are called “soft errors” because they can be corrected by overwriting
or power-cycling.

In FPGAsS, the result of a flip in a used configuration cell is a change to the functionality
of the device. Lesea et al. [71] provide experimental results from a long running study
to validate extrapolated mean time between failure (MTBF) estimates from accelerated
particle beams. This was done by placing hundreds of unconfigured FPGAs, manufac-
tured with different technology geometries, exposed to ambient radiation at four different
altitudes. The true MTBF was measured over periods of years and was determined to
be higher than many previous predictions for small feature size transistors. However,
the mean time between functional failure can be at least ten times that rate. This is
because most of the FPGA’s fabric is routing, and even if there is a 100% utilization of
resources, only up to 10% of the whole FPGA is actually used. Of course, flipped bits in
user logic, such as ROM content, may also result in faulty operation. As an adversarial
tool, one can use ionizing radiation to modify the configuration of the device to disable
protection mechanisms or alter memory content. This attack could be made successful by
exhaustively irradiating the device until the desired results are observed; if one is able to
focus the radiation and accurately apply it, once the location of the relevant registers is
known, the cost of attacking other systems will be lower. However, given the amount of
transistors in a device and the cost associated with precise irradiation, this attack might
not be practical except to well funded outfits. We should be aware that SRAM cells for
memory and FPGA configuration are of different construction than ones found in mem-
ory and ASICs. While SRAM cells are built for speed and have minimal loading, FPGA
configuration memory is allowed to be slow and thus, may have larger capacitive loads,
making this type of SRAM cell harder to flip [50, 71].

Measures for detection (and correction) of SEUs were introduced by FPGA vendors for
high-reliability applications [7, App. Note 357] [123, App. Note 714]. These functions
continuously scan the configuration cells and compare their CRC or Hamming syndrome
to the original’s, alerting on discrepancy. Triple modular redundancy (TMR) is another
solution, where all logic is triplicated and majority voters inserted to determine logic faults
due to radiation. This is used mostly in space applications where the mean time between
function failure is so low that the cost is justified. Along with TMR, these applications
also “scrub” the content of the FPGA every so often to restore the correct state of the
cell that flipped due to SEUs. Although not originally intended as security-enhancing
measures, these solutions may be used to detect radiation attacks, which may also be
applied to tamper proof modules which are not built to resist them. Aside from the
internal checks, readback could be used to send the read-out bitstream to an external

18

die face wire bond flip-chip

f
' L Do [G1G1016161O1O1®)

'die face

Figure 4: A wire-bond package is shown on the left where the die faces up with wires
bonded connecting it to the the solder balls through a substrate; in the flip-chip package
on the right the doun-facing die has “bumps” used to connect it to the circuit board
substrate using solder balls.

radiation hardened device to verify it using stored copy of the original. Alternatively, if
the bitstream is authenticated, it could be read-back and used to reprogram the FPGA.

3.6 Invasive and semi-invasive attacks

Invasive attacks physically probe and alter the target device in order to extract secret
information from it. The process involves de-packaging of the device and removing the
passivation layer that protects the metal interconnects from oxidation. This can be done
using chemicals, or for more precision, with a laser cutter that creates a hole for the
insertion of probes. This requires a microprobing station that allows the attacker to ac-
curately control the probes, position the die, and observe it with a microscope. A more
sophisticated and expensive tool required for small feature size integrated circuits and
higher precision is the focused ion beams (FIB) workstation. Using accelerated parti-
cle beams that interact with gases close to the die, the FIB can create incisions at the
nanometer scale, deposit metal connection, and take high resolution images of the die.
This can enable an attacker to either read data from buses or disable certain structures.
Skorobogatov [96] details the process of invasive attacks on microcontrollers while So-
den et al. [98] provide an excellent survey of techniques used for failure analysis by device
manufactures, which are the same ones that may be used by attackers for analysis and
attack.

The shrinking feature sizes®, integrated circuit complexity, and the destructive nature of
invasive attacks make them very costly. Further, the advent of flip-chip packaging used
for many of today’s FPGAs, and shown in Figure 4, prevent easy access to the face of
the die. Flip-chip packages mount the die facing down, close to the package’s pins to
reduce inductance and allow greater package densities, or smaller pitch. The older wire-
bond packages had the die facing up and wires attached to die in order to connect to the
package’s pins, and thus were easier to probe. Currently, there are no published reports
on a successful invasive attack against volatile FPGAs.

Semi-invasive attacks attacks require the removal of the device’s packaging, leaving the
passivation layer intact, while the rest of the analysis is done using techniques such as
imaging and thermal analysis. This class of attacks were introduced by Skorobogatov [96]
and cover the gap between the non-invasive and invasive types. Semi-invasive attacks
are cheaper than invasive ones since they typically do not require expensive equipment

5In 2006, FPGAs manufactured in 65nm and made of 12 metal layers were introduced.

19

or extensive knowledge of the chip; Skorobogatov has applied these attacks on devices
fabricated with 250 nm and larger manufacturing technologies. As with invasive attacks,
no reports are available on successful applications of these techniques on recent FPGAs.

One relevant semi-invasive techniques is data remanence: the effect resulting in the re-
tention of evidence of previously stored state in storage media or RAM cells after they
have lost power. Ionic contamination, hot-carrier effects, and electromigration can “im-
press” the stored state over time. Gutmann [42, 43] covers remanence of magnetic media
and RAM at length. For RAM, under certain conditions, such as high voltages or lower
temperatures, the previous state is available for a period of time after power is removed.
Skorobogatov [97] tested eight (manufactured at 250 nm technology and larger) feature-
size SRAM devices, all showing remanence of up to a few seconds at sufficiently low
temperatures. No public data is available for remanence analysis of FPGA memory cells
and since these have different characteristics, prior analysis of other types of cells may
not apply.

Both invasive and semi-invasive techniques remain an interesting research topic that will
undoubtedly yield new insights for dealing with the shrinking feature sizes of modern
FPGAs and integrated circuits in general.

3.7 Brute force, crippling, and fault injection

In cryptography, brute force means attempting all possible key values to search for a valid
output. It can also mean exhaustion of all possible logic inputs to a device in order, for
example, to make a finite state machine reach an undefined state or discover the combina-
tion to enter the device’s “test mode”. Another form of brute force attack is the gradual
variation of the voltage input and other environmental conditions, rather than variation
of logic states. Brute force is sometimes associated with black-box attacks that attempt
to exhaust all input combinations and record the outputs in order to reverse engineer
the device’s complete operation, or create a new design that mimics it. Considering the
stored state, complexity, and size of current FPGAs, this type of attack is not likely to
be practical or economic for reverse engineering the FPGA’s whole functionality [122].
That said, if a subset of the functionality is targeted that can be interfaced with directly
through the IOs, brute forcing can be fruitful, perhaps in combination with other attacks.
For critical functions, therefore, randomization may be useful. Christiansen [20] suggests
adding “decoy circuits” to the design to increase the effort of an attacker. The cost is
high, though, seven times LUT usage and twice the power in addition to requiring more
[0s and design time.

Crippling attacks either subvert a system to perform malicious functions or completely
bring it off-line, similar to denial-of-service attacks on networked servers and devices. The
absence of robust integrity preserving mechanisms for bitstreams, such as authentication,
enables anyone to program an FPGA if they have access to it. In the case where bit-
stream encryption is used (see Section 4.2) confidentiality is provided, but may not be
sufficient, as an adversary can still re-program the device with an invalid bitstream and
bring the system off-line. An extreme scenario is described by Hadzi¢ et al. [44] where an
FPGA is permanently damaged due to induced contention by using invalid bitstreams.
Their attack may not work in practice, however, because most systems cannot supply the
necessary current for sufficiently long to damage the device, unless they are connected to

20

a non-current-limited power supply. In any case, bitstream authentication, discussed in
Section 5.2, will solve all these issues, except the one where the FPGA is left unconfigured,
because it can only store a single configuration at a time. Of course, if the attacker has
physical access to the system, nothing could be done to prevent denial-of-service, aside
from physical measures.

Fault injection or glitch attacks attempt to force a device to execute an incorrect opera-
tion, or cause it to be left in a compromising state, or create a condition that leaks secret
information. This is done by altering the input clock, or creating momentary over- or
under-shoots to the supplied voltage. As an example, if a conditional branch is skipped
by the CPU due to a clock glitch some commands will not be executed; a voltage surge
or trough can cause registers to keep their state. If a power glitch is applied at the right
time, the number of rounds of an encryption algorithm may be reduced; Anderson and
Kuhn [10] demonstrate how glitches and fault injections were used to attack microcon-
trollers. The best defense against these attacks is making sure all states are defined and
at the implementation level, verifying that glitches cannot affect the order of operations.
Other defenses are clock supervisory circuits to detect glitches, and detection of voltage
tampering from within the device. Some of these solutions are available, and are discussed
in Section 6.3.

3.8 Relay and replay attacks

Relay attacks allow an adversary to impersonate a participant during an authentication
protocol by extending the intended, or assumed, transmission range for which the system
was designed. Relay attacks have been known since at least 1976 [22, p75] and are simple
to execute as the adversary does not need to break the cryptography if it is used. A
good example is a relay attack on proximity door-access cards that was demonstrated by
Hancke [46]. To gain access to a locked door, the adversary simply relays the challenges
from the door to an authorized card some distance away and sends the responses back.
The only restriction on the attacker is that the signals arrive at the door and remote
card within the allotted time, which Hancke showed to be sufficiently liberal. Another
example, is the joint work of the author with Steven Murdoch [31] on relaying smartcard
payment transactions to place unauthorized transactions on a victim’s card. It is evident
then, that despite the knowledge of such attacks we regularly see systems susceptible to
them being deployed.

Consider a system where the loaded bitstream executes an authentication protocol with
a chip that is placed near it on the PCB, and with which it shares a key (more about
this schemes in Section 4.3). This is meant to prevent the bitstream from being used on
any other system that does not have that specific authentication device on it. But if this
system is cloned along with the bitstream nothing prevents the challenges to be sent to be
relayed to a centralized database. This example is a bit contrived for commercial products
because it is unlikely that cloners will go through the effort of implementing such relay
attack, though for some systems it may be productive. In general, every security system
should consider the possibility of an attacker being able to relay challenges and responses
for a range beyond the one assumed, and proper timing constraints should be applied.
A cryptographic solution can be in the form of distance bounding, where the FPGA
can determine the distance of another device by a mutual exchange of multiple single-

21

bit challenge-response pairs and placing an upper bound on the distance by assuming
the signals traveled at the speed of light. The author and Steven Murdoch [31] have
implemented a wired version of the Hancke-Kuhn distance bounding protocol [47] on
an FPGA as a defense against relay attacks, being able to bound the distance between
participants to below a few meters. This may be a low-cost defense against relay attacks
when devices supporting the protocol, such as FPGAs, are communicating, or even used
as a cheap anti-tampering defense.

Replay attacks allow the attacker to resend recorded protocol transaction data at a later
time. The purpose, for example, can be to repeat a money transfer transaction or the
impersonation of a participant in an authentication protocol; Syverson [107] provides a
taxonomy of replay attacks. Cloning of FPGA bitstreams is the simplest replay attack.
Consider the case where a critical security flaw has been found in a fielded design and a
field-reconfiguration is performed with an updated bitstream. If the attacker was able to
record the bitstream containing the vulnerable design, and even if it is encrypted, he would
still be able to program the FPGA with it. This is possible because the FPGA cannot
verify the freshness of bitstreams or provide freshness of its own to the cryptographic
process because it does not preserve any state between complete configurations. One
solution can be the addition of a non-volatile counter that is added to the encryption or
authentication process to provide freshness; this value is called a nonce, which can be
random, pseudo-random or even a predictable string, but must strictly be used only once.
A more complicated solution that does not require additional FPGA features and at the
expense of user logic, is for the design to send an authenticated message to a database,
which attests that the operating version is up to date.

3.9 Social engineering

Social engineering or pretexting is the practice of manipulating people into revealing
secrets through any form of human-to-human interaction; phones are mostly used because
of the relative low risk and the ease in which one can pretend to be someone else. When a
fraudster can hand a $100 note to a cleaning staff member for some inside information or
cleverly manipulate the CEO’s secretary to email the information to him from within the
company’s network, the type of FPGA, cryptographic algorithm or any other technology-
based defense becomes irrelevant. The attacker can also penetrate offices under the guise
of a technician and install a sniffing device on the port or cable used to program FPGAs,
not only getting the designs, but also the keys used to encrypt them. In general, social
engineering attacks are significantly cheaper than defeating active protection mechanisms.
Simply restricting access for sensitive areas of the company’s network or files to particular
individuals with proper credentials can help, along with a robust audit trail of access to
information. Education, rather than technology, is the more effective way to minimize the
damage from social engineering due to the inherent human element; Mitnick [77] details
his exploits in this area and also suggests ways for companies to mitigate losses due to
social-engineering. One must also consider the corrupt, disgruntled and/or underpaid
employee who is seeking fame, fortune, vengeance, or all three. These can be hired by
competitors and walk away with secrets in their handbag or they may install a Trojan
horse, logic bomb, or a back-door in corporate files or software code. Phishing and
intrusion to databases is also a concern (think about modification of the HDL of cores

22

that are offered free to customers). Then, of course, there are the more traditional crimes
of laptop theft, break-ins, remote access at conferences and so on.

The social engineering class of attacks applies to any type of information and is mentioned
here for completeness as system developers must be aware of the social threats in addition
to the technical ones. Measures to thwart these attacks and minimize their effect should
be an integral part of every defense strategy and certainly part of the threat and cost
analysis.

4 Defenses

In the previous section we discussed the vulnerabilities and threats to which FPGAs are
prone, now we consider ways in which designers can protect their products.

4.1 Defense categories

The efficacy of a defense mechanism is evaluated by the cost of circumventing it; skill,
tools, and time required for breaking the defense are monetized to give the analyst a
metric that indicates the system’s estimated level of security. Before delving into the
technical discussion, let us first define defense categories:

e Social deterrents are provided by legal systems and also rely on peoples’ good so-
cial conduct and aversion from being prosecuted and incarcerated. Designs can
be protected by trademarks, copyrights, trade secrets, patents, contracts, licensing
agreements and, of course, by the catch-all concept of “intellectual property”® (IP).
However, social deterrents are only effective where appropriate laws exist and are
enforced. Attitudes towards design-ownership rights vary significantly from country
to country, making this type of deterrent not wholly effective in places where it
matters the most: in countries where most counterfeit goods are manufactured and
in which ownership rights tend not to be enforced.

e Active deterrents are physical and cryptographic mechanisms that prevent theft
and misuse of designs. Active protection is highly effective if implemented correctly,
and is also locale-free (assuming we ignore export restrictions laws or cryptographic
devices). Further, combined with the social deterrents, active deterrents can help
convince a court that the designer has taken the appropriate measures to protect
the design and that the perpetrator had to actively circumvent them.

e Reactive deterrents provide detection or evidence of intrusion and fraud that may
help in applying the social tools that are available. Digital forensics rely on these
mechanisms, such as closed-circuit TV, watermarking, fingerprinting, and steganog-
raphy, to initiate further investigation or improve the security of a system after an
attack or intrusion. Audit trails are a reactive mechanism, and are an important

6This term is now so loaded that it has become somewhat meaningless; in this paper, other, more
descriptive terms, will be used instead.

23

facet of security in the absence of, or in addition to, active ones. Reactive mea-
sures do not actively prevent fraud or theft, but their presence may deter would-be
attackers, and it is sometimes beneficial to advertise them.

4.2 Bitstream encryption

Encryption is a reversible function that provides confidentiality to data, and depends on
the secrecy of a key such that even if the encryption algorithm is known, the reversal
of the process to arrive at the correct original input is not possible. Encrypting the
bitstream at the end of the design flow and decrypting it within the FPGA defends against
cloning, reverse engineering, and in some cases, provides limited tampering protection.
The basic encryption of configuration data for programmable devices was first suggested
in 1992 in a patent by Austin [13]. But the first implementation was in Actel’s 60RS
device family, though it soon became an example-case for bad key distribution practice
since they permanently embedded the same vendor-defined key inside all devices (this
protected against reverse engineering rather than cloning) [54]. This meant that a single
successful attack would allow decryption of all bitstreams, so the incentive to obtain the
key was high — and since the key had to be present in the software, the attacker only
needed to reverse engineer the code, rather than resort to invasive attacks. In 2000 Xilinx
implemented a bitstream encryption mechanism in their Virtex-II family which allowed a
user-defined key, though by now this functionality is common in most high-end FPGAs,
and works as follows.

After the bitstream has been produced, the software requests a key from the user and
encrypts the configuration payload of the bitstream. The user then “programs” this same
key into the FPGA, which has a dedicated hard-wired decryptor in its configuration core.
The bitstream has header information that instructs the FPGA to pass the data through
the decryptor before it is sent to the configuration memory cells, as usual. An attacker
who obtained the encrypted bitstream cannot use it because he does not have the key;
thus, he can neither reverse engineer it or use it in another device (assuming different keys
are loaded into each FPGA). Altera’s Stratix II and III FPGAs also allow the designer
to choose whether to force all bitstreams through the decryptor, disallowing unencrypted
bitstreams. This prevents the “execution” of any bitstream not encrypted with the correct
key, but does not prevent denial-of-service attack by attempting to program the FPGA
with an invalid one.

4.2.1 Key storage

Keys must be present inside of the device at the time of bitstream decryption, and there
are two key-storage techniques used today: volatile and non-volatile. Using volatile stor-
age, keys are kept in low power SRAM memory cells and are powered by an external
battery attached to a dedicated pin when the FPGA is not on. The advantages of volatile
key storage is that allows erasing the keys (mechanically or electrically) in response to
tampering even when the device is not powered, and also forces the attacker to power the
device during an attack complicating semi-invasive and invasive attacks. These attributes
appeal mostly to security-conscious designers as it conforms to the US government’s FIPS
140-2 [81] and provides a high level of security. The main disadvantage is the battery that

24

takes up PCB space (especially with a battery holder), can fail, and that it may need
to eventually be replaced. As discussed in Section 2.1, the battery is therefore not very
appealing to cost-conscious designers who may not necessarily need the highest secu-
rity protection and would rather have something effective at a low-cost and essentially
maintenance free.

Using non-volatile storage, keys are permanently embedded in the device using fuses, laser
programming, Flash, or EEPROM. Fuses have long been used with redundant circuits
for improving yield, tuning, and disabling test circuits. However, integrating non-volatile
memory with the latest CMOS technology is a challenge as they introduce a non-standard
manufacturing step that impacts cost, yield, and reliability. This may be the reason why
FPGA vendors have only recently started offering non-volatile key storage. Embedded
keys have the advantage of not requiring external devices and incorporate the cost of
this functionality into the price of the FPGA, which has a much greater appeal to cost-
conscious designers over the battery solution. Embedded keys can also assist against
run-on-fraud as the keys may be programmed into the device at a trusted facility before
being shipped to a third party for system assembly and testing.

Xilinx provides volatile key storage with Triple-DES and AES-256 encryption for Virtex-
II/PRO and Virtex-4/5 device families, respectively [123, App. Note 766]. If encryption
is used, readback and partial configuration are disabled by multiple internal registers,
independently of the bitstream bit-settings [70] [123, User Guide 191]. However, the the
internal configuration access ports (ICAP) are still enabled, allowing internal readout of
the configuration content and sending it out through a user 10. Therefore, even when
encryption is used, designers should be mindful of a Trojan horse attack that could be
inserted by a malicious employee or core vendor. Altera’s Stratix II FPGAs have non-
volatile key storage for AES-128 encryption, but require external components on the
printed circuit for producing the voltages necessary for programming the keys if this is
done in-circuit [7, Handbook SIT51003, App. Note 341 v2.1]. With Stratix III, Altera
provides JTAG-programmable battery-backed volatile and non-volatile key storage for
bitstream encryption using AES-256, catering to both types of security consumers [7,
Handbook SITI5V1 and White Paper 01010]. The scheme requires two keys, one en-
crypting the other to produce a “real key” which is used to encrypt the bitstream. In the
FPGA, the real key is obfuscated using a proprietary scrambling function and then stored
in distributed cells to make it harder for the invasive or semi-invasive attacker to locate.
When the encrypted bitstream is sent to the FPGA, an inverse scrambling function is
used to produce the real key for decryption. It is not immediately clear what is gained in
terms of security from the two-key scheme as it is described. Lattice provides non-volatile
key storage using AES-128 encryption in the ECPM2/M family of FPGAs [66, Tech. Note
1109].

4.2.2 Key management

NIST’s Recommendation for key management [81, FIPS 800-57], remarks that “key man-
agement is often an afterthought in the cryptographic development process. As a result,
cryptographic subsystems too often fail to support the key management functionality
and protocols that are necessary to provide adequate security... key management plan-
ning should begin during the initial conceptual/development stages of the cryptographic

25

development lifecycle”. Although it is one of the most important aspects of security en-
gineering, one rarely sees it discussed as part of a defense strategy for rights protection
and design distribution.

Key management is the process of key generation and distribution (transport) for and to
communicating parties, either prior or after initiating this communication. As the security
of the system should rely on the secrecy of keys, their management infrastructure is as
important as the choice of cryptographic algorithm, protocol, and their implementation.
The logistics of keeping keys secret while stored, transported and updated, along with
adequate access controls amounts to a non-trivial cost that must be incorporated into the
overall cost of a defense strategy; at the least, procedures for key management should be
defined. It is also quite possible that the total cost of a defense strategy could exceed the
loss due to theft.

As a basic example, let us consider key management for bitstream encryption. The first
step is to establish the value of keys. If a single key is used to encrypt all instances
of bitstreams, the costs are low, but the result may be a catastrophe, with a single
compromise undermining the security of all fielded systems (as we have seen with the
60RS device). On the other hand, if each bitstream is encrypted with a unique key, the
logistical costs are higher, but a compromise is localized to a single system. A solution can
lie between these extremes and decided based on the level of trust the system developer
has with other principals and also by the damages due to compromised keys. Placing
a value on keys also determines how often they are to be replaced, their distributed,
and how well are they guarded. The next step is to determine the key and encrypt the
bitstream. The system developer must first identify a set of trusted people to handle keys,
and also decide if he trusts the vendor’s software not to leak the keys (or wrote his own
encryption software), and then use trusted computers in a secure environment encrypt the
bitstream and program the keys into the FPGA. The database of keys should be physically
protected and audited, and be restricted to people with appropriate credentials. All efforts
should be made to detect the compromise of keys, and mechanisms put in place to revoke
them (if possible, non-volatile keys can not be over-written). More elaborate schemes for
distribution will be discussed in Section 5.3, ones that will require even greater overhead
for key management.

4.2.3 Problems with encryption

Despite encryption, and due to a lack of cryptographic-level data integrity, the attacker
would still be able to construct a bitstream that is not identical to the original, yet is
still valid. Block-ciphers can operate in several modes, which describe the various ways
in which messages greater than their respective block size n (in bits) are processed [81,
Pub. 800-38A]. Each of these modes has advantages and weaknesses depending on the
application. For example, the electronic codebook (ECB) mode encrypts each block
independently of any other, resulting in identical plaintexts being encrypted to the same
ciphertexts. This is considered a weakness for messages with repetitive blocks — as FPGA
bitstream are — because the attacker can observe that certain blocks are the same and also
be able to exchange them. Where messages are less or equal to n and that contain random
elements such as nonces, this is less of a problem. The cipher block chaining (CBC) mode
is used to prevent the repetitions of ECB by starting with the encryption of a random

26

FPGA secure processor

ke
Y| RMG challenge L MAC
PROM T s
laintext -
t?itstream >| |compare [« response
enable
key is obfuscated .
within bitstream function

Figure 5: A challenge-response scheme used as a cloning deterrent where a shared key is
stored in an external non-volatile processor, and also obfuscated in the bitstream. When
this bitstream is loaded onto the FPGA, a random challenge is produced internally and is
sent to the processor, which responds with a MAC of this challenge. The FPGA performs
the same operation and the MACs are compared; an enable signal is produced if there is
a match.

initialization vector (IV) and by having each block depend on its predecessor’s resulting
ciphertext. CBC is self recovering in that it can recover from bit transmission errors
within two blocks with an average of (n/2) 4+ m incorrect bits: n/2 in the plaintext block
corresponding to the block with the corrupt bits and m bits in the subsequent plaintext
block, while all other remain unchanged. Thus, and since encryption does not necessarily
detect tampering, an adversary can toggle m bits in one block of an encrypted bitstream
and affect the design without knowing the key. Of course, the block preceding the one
with the toggled bits will be corrupt but may not contain data that is relevant to the
attacked portion of the design, for example, RAM content. This attack can be used if the
goal is to find a collection of bits that when toggled, disable a defense mechanism. Cipher
modes, therefore, need to be chosen carefully per the security goals of the application.
The Virtex family of devices uses CBC [123, User Guide 071] while Altera and Lattice
do not specify their block cipher’s mode of operation [7, Handbook SI151003] [66, Tech.
Note 1109]. FPGAs can detect spurious bit flips that are due to noisy transmission by
using linear checks, and the attacker may need to overcome that in order to succeed in
the attack above. This will be discussed in Section 5.2 on bitstream authentication.

4.3 Design theft deterrents

FPGA vendors offer a few cloning deterrents that rely on the secrecy of the bitstream’s
encoding to obfuscate secrets. Indeed, they are not cryptographically secure but may
increase the cost of cloning sufficiently to be useful for cost-conscious designers. These
solutions are suitable for the low-end devices that do not have the bitstream encryption
capability.

In 2000, Kessner [56] was the first to propose an FPGA bitstream theft deterrent with
a CPLD sending a keyed LFSR stream to the FPGA for comparison to an identical
local computation to verify that it is mounted on the right circuit board. More recently,
both Altera and Xilinx proposed very similar challenge-response schemes [7, White Paper
M2DSGN] [123, App. Note 780] as cloning deterrents, which are outlined in Figure 5.

27

The FPGA shares a key with a non-volatile (NV) processor placed beside it. The FPGA
sends a challenge produced by a true random number generator to the NV device and
both perform a key-based computation on it. The NV device sends the result back to the
FPGA where a comparison is made; if there is a match, an enable signal is asserted to the
rest of the logic. The outcome is that the design has verified that the FPGA it is operating
on is mounted on the expected printed circuit board. While implementing these schemes
we must be careful to make sure the random number generator is not easily influenced by
temperature and voltage variations, as well as considering readback difference, relay, and
replay attacks.

In the Spartan-3A device family, Xilinx offers a “Device DNA”, which is a non-volatile,
factory-set, user-logic accessible, 55-bit unique serial number [123, User Guide 332, p241].
Xilinx suggests using this number as a “key” for design verification schemes using an
external device in a similar, or even less secure, ways to the ones described above. Since
the serial number is not a secret — it can be read out by anyone — Xilinx suggests
that the attacker’s challenge would be to discover the algorithm used for processing this
number.

These schemes rely on the continued secrecy of the bitstream’s encoding for security, which
can provide an incremental challenge to would-be attackers when active measures are not
available. We discussed the issues of bitstream reversal in Section 4.3; unfortunately, we
cannot quantify how well these schemes protect designs.

4.4 Watermarking and fingerprinting

A digital watermark is a reactive measure that allows the owner of a file to place a hard
to remove proof of ownership, which is interwoven and transparent to an observer; it
typically ties the file or work to a particular author, source, or the tool that produced it.
Fingerprinting is a watermark which is used to identify specific end-users for which the
design or work is intended. Watermarks are traditionally encoded into human-inaudible
frequencies of audio files and in the least significant bits of images, where they are below
the sensitivity threshold of human vision. The content, therefore, is altered but goes
un-noticed.

Khang et al. [52] provide the fundamentals of watermarking techniques for integrated
circuits and FPGA design marking; Abdel-Hamid et al. [1] provide a good survey for
general watermarking techniques, and their merits. Ideally, watermarks should be easy
to insert into the development flow; not affect the correct functionality, which is different
from the traditional use; use the smallest amount of resources possible; be unforgable;
and, be sufficiently robust as proof of theft or fraud.

Watermarks can be inserted at three different stages of the FPGA design flow: HDL,
netlist, or bitstream. An HDL watermark can be used if the designer is marking his own
design, but he needs to be careful that the mark is preserved throughout the flow; if
the watermarked HDL was supposed to protect another principal’s work it would not be
effective because it can be easily removed. At the netlist level, the mark can be removed
with some difficulty, so it should be delivered encrypted, also making sure that the mark
is not optimized away or removed at later stages. Bitstream-level insertion is available
only for the system designer because otherwise it would require post-processing by the

28

core vendor, which is not feasible because he had no control over the design flow.

Lach et al. [64] were the first to address FPGA bitstream watermarking and fingerprint-
ing for design protection. They suggested doing so by embedding content or functions
into unused LUTs (“additive-based” marking). To avoid an elimination attack by col-
luding recipients of the same design with differing marks, they also suggest varying their
placement for every instance. A possible attack against this scheme would be to remove
LUT content from unencrypted bitstreams while confirming that the design still works
correctly, iteratively removing identifying marks; masking attacks are also possible by
inserting random content into all LUTs that are not used. Lach et al. [65] later improve
their technique by splitting the watermark into smaller pieces such that the above attack
is made harder. Building on the constraint-based ideas of Khang et al. [52], Jain et al. [51]
propose placing and routing a portion of a completed design to incorporate design-specific
timing constraints as watermarks. This will result in a unique bitstream that can be re-
produced given the original HDL and constraints to prove ownership. This may work
for a complete design rather than the more desirable marking of individual cores, be-
cause a core vendor cannot enforce constraints through a netlist such that they always
produce the same bitstream portion when multiple cores are combined together by the
system designer. Van Le and Desmedt [67] describe possible attacks on the schemes pro-
posed in [52, 64, 65]; however, the ones relating to LUT-based marks will require reverse
engineering the bitstream, at least partially.

Ziener et al. [24] propose using the content of LUTSs extracted from the design’s netlist
as a watermark. Then, LUT content is extracted from a suspected copied bitstream and
it is statistically determined if an unlicensed core is present; since the LUTs are part of
the functional design, removing them also alters its correct operation, so it resists the
above elimination and masking attacks. Ziener and Teich [125] propose using LUT-based
signatures that once externally triggered for verification can be observed through power
analysis.

The reactive nature of watermarks do not actually prevent theft, but may serve as initial
evidence in court or trigger further investigation. It would make a hard case for a fraudster
to claim that he independently arrived at an identical copy of artwork when photographs,
audio or art are concerned, though it is plausible that engineers independently arrive
at very similar code, ones that may falsely trigger the statistical threshold for fraud in
watermarking schemes (especially since synthesis tools infer various HDL descriptions to
a set netlist); so the scheme must be robust enough such that the probability of this
happening is very low. Then, of course, reactive schemes are only useful where ownership
rights are enforced, further reducing their usefulness. As most of the counterfeit hardware
comes from countries where that is not the case, these mechanisms are less appealing
compared to active ones. Lastly, some watermarking techniques rely on the continued
secrecy of bitstream encoding, opening them to various manipulation attacks that may
prevent them from being used as conclusive evidence in court; if the fraudster encrypts
the original plaintext watermarked bitstream, the detection and proof problems are made
worse, if possible at all. For all the reasons above, watermarking should be implemented
as a tool when it can be conveniently applied and verified, as part of an overall active
defense mechanism. This will serve as a deterrent, help protect the watermark from being
tampered with, but also provide evidence that the infringer had to actively attack the
system in order to remove or alter it.

29

FPGA at a trusted facility

(plaintext } _ PROM |
bitstream | enc- |
|T|—> rypt |
e encrypted)| ______ J

| y | dec- bitstream

rypt
!

user logic

Y

A

in the field

Figure 6: In a trusted facility the plaintext bitstream is encrypted using the embedded
key and is stored in a PROM, while in the field the bitstream is decrypted on power-up.
The advantage of this scheme is that the key need not leave the device.

4.5 More bitstream encryption

This section covers some of the mechanisms that have been proposed in the past for
bitstream protection or as cloning deterrents.

Kean [54] suggested that embedded keys (programmed by the FPGA vendors, foundry,
or system designers) be used such that the FPGA itself can encrypt and decrypt the
bitstream without the key ever leaving the FPGA. As outlined in Figure 6, the first stage
happens in a trusted facility where the plaintext bitstream is encrypted by the FPGA
using the embedded key and then stored in a PROM. While the system is deployed in the
field, the bitstream is decrypted with the same internal key using an internal decryption
core. The advantages of this scheme are that the manufacturing facility does need to
be trusted and that the key does not need to ever leave the FPGA. The disadvantages
are that unless the system developer is allowed to program the keys, other principals
become trusted parties; both encryptors and decryptors must be used, which is fine for
DES implementations, but costly for AES because both functions require different imple-
mentations’; keys are permanently embedded which is a disadvantage to some; and, the
logistical cost of key and design distribution are high. Kean also made the observation
that it may be sufficient to only slightly increase the price of cloning and suggested em-
bedding keys in the photo masks (artwork) be used in the manufacturing process. Each
FPGA family member will have one of a set of keys embedded in it but with no pack-
age marking indicating which. Since the device encrypts the design as with the previous
scheme, the system designer does not need to care which key from that set is used on
his FPGA. However, a cloner, having obtained a bitstream, will have to buy a number
of FPGAs which is a multiple of the key set size for every one he can use, on average.
The result is that cloning becomes more expensive, but at the expense of complicating
the manufacturing process.

Bossuet et al. [16] propose a scheme where an embedded key is accessible to the user logic
and uses partial reconfiguration to encrypt and decrypt the bitstream. First, a bitstream
implementing a user chosen cipher is loaded onto the FPGA and used to encrypt the

"Kean suggests the CBC mode, but other modes that only require the encryption function for both
operations may be used.

30

response
QpF—

challenge[n:0]

Figure 7: An “arbiter PUF” by Lim et al. [72] where a signal’s rising edge is propagated
through multiplexers controlled by a challenge vector. The routes are designed to be
identical, though uncontrollable manufacturing variability cause them to have minute
variation in length, so the response is either 1 or a 0 depending on that variation. This
structure can be replicated to create arbitrary long unique bit strings.

main design’s bitstream using an on-chip key. This encrypted bitstream is then stored
in a PROM. On the same PROM a decryption bitstream is also stored which is used to
decrypt the encrypted bitstream in the field. The critical flaw of this scheme is that if
the key is accessible to the user logic, anyone can read it out and decrypt the bitstreams,
so some hard-wired access control mechanisms need to be put in place.

5 Ongoing research topics

5.1 Physical unclonable functions

Physical unclonable functions (PUF®) are methods of extracting unique identity informa-
tion from items or circuits based on their physical properties for the device authentication.
Pappu et al. [86, 87] introduced physical one-way functions where the scatter pattern from
a laser beam passing through or reflected from a block of epoxy is converted into a bit
string unique to that block. Buchana et al. [18] use the microscopic arrangement of paper
fiber as identifiers, which turns out to be very reliable, even after moderate physical abuse.
Since these strings are physically coupled to the items and are unique, they are suitable
for authentication and key generation.

Silicon PUFs (SPUF) were introduced by Gassend et al. [37], Lee et al. [68], and Lim
et al. [72] for authentication of integrated circuits, and rely on the uncontrollable man-
ufacturing variability. An arbiter PUF is shown in Figure 7. Identically designed delay
lines are routed through multiplexers that are controlled by a challenge vector. A signal
edge is simultaneously asserted on both routes propagating according to the multiplexers’
setting until it reaches the sampling register, with the result determined by which signal
arrived first. The two routes are designed and laid out to have identical delays, but be-
cause the manufacturing process introduces very small uncontrolled variations, in practice
the routes will not have the same propagation delay on the fabricated integrated circuit.
If m structures shown in Figure 7 are replicated, challenge vectors of size n controlling

8 Also called Physical Random Functions but both are abbreviated to PUF.

31

the multiplexres allow 2" challenges-response pairs of size m. Suh and Devadas [105]
suggested the ring oscillator PUF where many identical free-running ring oscillators are
used to produce unique bit strings based on slight delay variations between the oscillator’s
inverters. Tuyls et al. [114] have developed the coating PUF which is applied to the sur-
face of a die such that the coating’s unique capacitive distribution can be measured from
within the device to extract a key and detect invasive tampering. Guajardo et al. [40]
and Holcomb et al. [48] propose using the initial state of static RAM cells as a source of
entropy for either identification or random number generation. Manufacturing variabil-
ity and environmental conditions cause SRAM cells to settle at 0 or 1 upon power-up;
Guajardo et al. demonstrated that large SRAM blocks within some Altera FPGAs can
be used for establishing unique keys for that may be used for design protection. Hol-
comb et al. similarly showed that SRAM chips behavior can be used for RFID token
fingerprinting or for random number generation.

PUFs are very attractive for authenticating devices and design-rights protection: creating
a model for faking PUFs is incredibly hard given that is it based on physical properties
of the individual die; derived keys “exist” only when needed, and are not permanently
stored; invasive tampering changes the properties of the PUF such that the correct key
can no longer be reproduced; there is no need to program a key, and it does not even need
to leave the device; random challenge-response pairs can be created with some PUF's such
that a unique string is generated for the purpose of authentication; PUFs are scalable in
that more of them can be generated according to security needs; and finally, for FPGAs,
several of the proposed structures can already be realized in existing devices, as we will
see next.

When used for identification and to produce keys for cryptographic applications, PUFs
should be unique for each die and reproducible for a given die irrespective of temperature
and voltage variation (within operating ranges). These properties are quite challenging
to achieve and pose the most difficulty in the generation of consistent, yet randomly
distributed, strings. The research on delay-based PUFs [37, 72, 105] has shown that
these circuits can be implemented on FPGAs, and by using error correcting codes, the
above requirements can be satisfied to a reasonable extent. However, as of late 2007, the
author has no knowledge of a commercial use of silicon PUFs, or ones that are used in
FPGAs. The reason might be the resource overhead required to make them work, which
is an aspect often neglected in research publications during analysis and evaluation of
their applicability. The error correcting codes or fuzzy extractors [40, 114] may require
significant resources, much more than the simple structures that generate the “raw” bit
strings. An elegant solution may use the embedded temperature and core voltage monitors
available in recent FPGAs to minimize the need for error correction by operating the PUF
only under specific environmental conditions.

In summary, robust PUFs will solve a real industry problem, especially for FPGA-design
protection; one would expect this area of research will continue to be very active in the
next few years.

5.2 Bitstream authentication

Bitstream authentication was already mentioned as a solution to several problems asso-
ciated with FPGA security. Authentication provides two things: entity identification,

32

which allows the receiver of a message to be certain of the sender of a message; and,
message integrity that assures the recipient that the message has not been altered in
transit. Authentication is sometimes considered to be more important than encryption,
as the damage an adversary can cause by impersonation can be much greater than him
having the ability to merely read secret communications. Bitstream encryption is a good
step forward for protecting designs though we have seen that it is not meant to guarantee
the data’s integrity, only its confidentiality. Encryption, therefore, protects the bitstream
from cloning and reverse engineering in transit independently of the FPGA while authen-
tication guarantees the correct and intended operation of the bitstream while it is running

on the FPGA.

FPGA vendors have traditionally relied on linear checks, such as cyclic redundancy (CRC),
to protect FPGAs from bitstreams corrupted by transmission errors on a noisy channel.
The result of a corrupt bitstream is wrong functionality and also circuit shorts (or, con-
tention) that may damage the device if the current is sufficiently large and lasts for a
long period of time. Linear codes are good for detecting occasional, unintentional bit
errors, but are poor at handling maliciously inserted bit manipulations since they can
be forged quite easily [104]. Linear checks, of course, also lack a critical requirement of
authentication: entity identification.

Authentication is most often achieved by computing a message authentication code (MAC).
MACs are generated by one-way, collision-free, functions that take an arbitrary length
message and produce a fixed length string of bits such that it is computationally infeasible
for an attacker to find the original message, or find two different messages that result in
the same string. The entity identification is achieved by incorporating a shared key into
the process.

Ee .
Encryption : plaintext + key — ciphertext
Hge .
Authentication : plaintext + key —=% plaintext || MAC

The MAC string is appended to the message, which may or may not be encrypted, and
is verified at the receiver by computing the MAC of the message again. If those MACs
match, the receiver knows that the message is authentic and that whoever produced it
is in possession of the shared key. MACs require symmetric keys to be established prior
to communication but signature-based authentication can also be done using public key
cryptography where each participant has a private and public key. By signing the message
with the private key, a signature is generated that can be verified with the public key.
PKC has all the necessary properties for solving bitstream security, except that current
implementations are too costly in hardware for reaching the configuration throughput
required in order for them to be integrated as a hard core by the vendors.

For computing MACs we can use hash functions or block ciphers in certain modes. Block-
cipher mode CBC-MAC can be used to produce a MAC by simply taking the last enci-
phered block as the MAC. CBC-MAC is insecure for variable message lengths, and NIST
has now standardized a new mode called cipher-based MAC (CMAC) [81, Pub. 800-38B|
to overcome this shortcoming. In either case, the same key should not be used to both
encrypt and compute a MAC of the same plaintext. Recognizing that using the same

33

key for both operations is a desirable property, new modes and ciphers have been pro-
posed to do that securely; these are collectively called authenticated encryption (AE) and
Black [14] provides a good introduction to them.

For bitstream authentication, Parelkar [88] suggested and evaluated the use of various
AE and hash algorithms, concluding that CCM was best fit with respect to performance
and size; Parelkar and Gaj [89] suggested the use of the AEX mode. Non-standardized or
patented algorithms are not appealing for FPGA vendors to adopt since their security has
not been fully scrutinized, and for fear of legal complications once the design is committed
on-chip. The demand for authentication may not be sufficiently high for FPGA vendors
to commit large portions of silicon area to this function, so digital signature schemes are
probably not an option at this point. An important reason why authenticated encryption
may not be ideal is because it uses a single key for both operations though it might
be a disadvantage when the operations need to be separated due to key management
considerations, access control, and authenticating multiple entities. Given the growth in
size, it is likely that in the future, a multi-user environment will reside within a single
FPGA; then, it would be advantageous to have these operations separated for role- and
identity-based authentication (similar key management issues outlined in Section 4.2.2
apply here as well). The author [30] gives an application example where authentication
would be useful on its own, without encryption, to provide code audit functionality for
voting machines and an authenticated “heart-beat”. Also, an argument is made that two
parallel block-cipher cores, one in Counter [81, Pub. 800-38A] and the other in CMAC
mode, would be a suitable solution considering the technical and economical constraints
of the FPGA vendors.

5.3 FPGA digital rights management

Most of the topics covered in this survey are related in one way or another to “intellectual
property” protection and secure distribution of designs. More precisely, restricting FPGA
bitstreams and cores from being used in unauthorized devices or by unauthorized prin-
cipals, and enabling a pay-per-use model. Essentially, this is digital rights management
(DRM) for FPGAs. “DRM” now carries a bad connotation due to the over zealous use of
this “technology” by some industries, though for our application it may actually benefit
both cores and system designers. For example, an unknown start-up would benefit from
paying per-use for protected cores, rather than pay large sums up-front for unlimited use
(before they know how successful their product will become), while the cores vendor ben-
efits from the business of customers that would not be able to afford the cores previously.
The “design-reuse” industry has dealt with secure distribution by mostly relying on so-
cial means such as “trusted partners” and reputation as we will discuss in Section 6.1.
An industry-wide panel discussion in early 2007 [120, 121] provides some insight into
the industry’s perception of using a software encryption flow for cores protection. The
concluding remarks are that the current trust-based system is working well for large cor-
porations — less so for start-ups — and a better solution is desirable for the long-run,
but is not necessarily urgent. These discussions primarily pertain to ASIC cores, with
the unique FPGA design flow and usage model typically glossed over and added as an
attachment. Thus, considering the ever growing size and use of FPGAs and their usage
model, DRM for FPGAs may be more pressing and should be examined more carefully.

34

We defined an ideal model for core distribution in Section 2.1, but achieving it all at once
would be near impossible, and perhaps even impractical. A better understanding of the
problem is required, and consideration given to issues more pressing to cores vendors such
that those are dealt with initially.

Although some tool vendors allow the input of a post-synthesis encrypted netlist, without
industry-wide compatibility this will not work very well. Core vendors, therefore, devise
their own protection mechanisms based on their risk perception. Altera, for example,
allows the compilation of non-Altera cores hosted on its website for simulation and re-
source utilization purposes but disallows the generation of a bitstream through software
enforcement [7, App. Note 343]. For its own cores, time-restricted bitstreams (“unteth-
ered”), or ones that require constant connection to the software through the programming
cable (“tethered”), are generated for on-chip evaluation [7, App. Note 320]. Xilinx also
provides evaluation facilities of a handful of cores for their embedded processors, which
expire after “6-8 hours when running at the nominal clock frequency specified for the
core” [124], while other HDL cores are available through various licenses that allow a
time-limited evaluation. Both Altera and Xilinx’s schemes require signing agreements or
agreeing to restricted use of the cores, and rely on the bitstream’s encoding, not cryp-
tography, for enforcing the timing restrictions while the cores are operating inside the
FPGA. In June 2006, Synplicity developed the “Open IP Encryption Initiative” for se-
cure core exchange [25] and offered it to the Virtual Socket Interface Alliance (VSIA) [119]
to become an industry standard. But in June 2007 VSIA announced it is ceasing opera-
tion [118] leaving the status of Synplicity’s initiative unclear. (the scheme does have some
ill-advised properties such as the distribution of vendors’ private keys with every instance
of the software.)

Secure distribution of digital designs and content is incredibly challenging, and we know
it has yet to be solved in either software or hardware. In the case of FPGA design,
we must allow the system designer to simulate, verify, and integrate several cores into
his own design while still being assured that the final core he receives is identical to
the one simulated?. Key management and distribution is a problem; specifically who is
entrusted with them, and who can access the designs themselves. If we use cryptography,
export-restrictions may be an issue; can we still use these solutions knowing that they
are ineffective where needed the most? At the low-level, how can we prevent the system
designer from reading back the design, or streaming it out using the ICAP to get an
unencrypted non-DRM’d version of the bitstream? Finally, and most importantly, we
must justify our proposals to the FPGA vendors in terms of their gain from adopting it. As
we discussed in Section 2, FPGA vendors need to be convinced that the solution is worth
their development time and commitment of die real-estate, otherwise these proposals will
remain paper designs. Thus, a cursory economic assessment needs to be made, while
making sure that incentives for adoption are well aligned for all principals and that the
overall system is not too cumbersome such that it is actually used.

9The extent to which system designers may care about this last point varies, but the trust aspects
associated with it are important.

35

5.3.1 Secure processor-code distribution

Several FPGA families have hard-core embedded processors, while soft-core ones (e.g.
Nios and MicroBlaze) can be instantiated using the regular HDL flow in the user logic.
These are used to execute instruction sets corresponding to the architecture, as would
otherwise be possible if the processor was an external device. The code is written in a
high level language such as C, compiled, then becomes part of the bitstream as part of a
RAM; this compiled code may be updated without full reconfiguration of the rest of the
configuration fabric. Simpson and Schaumont [95] address the scenario where the system
developer creates a design that uses either a hard or soft processor, but is able to accept
updates to the compiled code!'® from third parties. Their protocol is able to authenticate
and decrypt code based on keys and challenge-response pairs derived from an embedded
PUF. This requires the FPGA vendor to collect many challenge-response pairs of vectors
from the PUF and enroll those, along with the FPGA’s unique identifier, with a trusted
party. Then, cores vendors enroll their compiled code, along with a unique identifier,
with the trusted party. Through several exchanges between principals and the mutually
trusted party, the compiled code is encrypted such that it can only be used in FPGAs
that can reproduce the correct PUF response given a certain challenge vector. The scope
to which this scheme applies is limited to the secure distribution of compiled code for
embedded processors and does not apply to cores that use the FPGA’s fabric because
then a feedback mechanism would be required such that bitstream-level “stitching” with
the system developer’s design is possible. Guajardo et al. [40] suggest enhancements to
this protocol and also describe an implemented PUF, as discussed in Section 5.1, which
was originally simulated by an AES core by Simpson-Schaumont.

5.4 Physical isolation of cores

For protection of individual cores within a multi-core design Huffmire et al. [49] propose
“moats” to isolate and “drawbridges” macros to connect the cores such that no sensi-
tive information leaks from one core to another. The cores are separated by unrouted
columns and rows, and may only communicate through macros with pre-defined connec-
tions. Commonly known in the security industry as “red-black separation”, elements of
a design that handle classified material (red) need to be completely separated from the
unclassified /encrypted (black) portion of the design. Huffmire et al. describe a set of tools
that operate directly on the bitstream to verify the separation after the insertion of arbi-
tration modules (“moats”) between the cores. The moats are created by prohibiting the
place and route process from placing logic or routing through certain rows and columns
of the FPGA (the granularity is the a configurable logic block (CLB)). Each CLB has a
routing box that can route to 1, 2, 8 or 16 CLBs away with some routings that span the
whole chip, so depending on the width of the moat, certain route lengths must also be
prohibited from use such that the moats are not bridged.

Similarly, and likely preceding the research of Huffmire et al., McLeane and Moore [74]
reported a collaboration between Xilinx and the U.S. National Security Agency that
yielded a set of tools and macros for isolation in the Virtex-4 family of FPGAs. The

10The authors use the terms “software”, or SW, interchangeably with “IP”, which is a bit confusing;
here it is referred to as “compiled code”.

36

analysis showed that it is sufficient to provide a single CLB column “fence” to provide
adequate isolation, while connecting them using pre-defined “bus macros”. The unclassi-
fied portion of the NSA-Xilinx report reveals that the Virtex-4 FPGA has gone through
rigorous analysis by the NSA and was deemed secure for red-black applications. The
short unclassified report also indicated a development of an internal “security monitor”,
but does not provide implementation details.

5.5 Evolvable hardware

Modeled after biological evolution, circuits are made to evolve by inducing “mutations”
and subsequently assigned “fitness” scores iteratively until the desired functionality is
achieved. Fitness is assigned to a circuit, or portions of it, based on the degree to which it
meets the specifications in a process similar to natural selection. Reconfigurable devices
are an ideal platform in which such circuits can be developed and indeed they are used
extensively in this field [38, 92, 93, 109].

Evolved circuits can produce designs that are significantly different from conventionally
designed ones; Thompson and Layzell [110] described “the most bizarre, mysterious”
evolved circuit implemented on a Xilinx XC6216 FPGA. The circuit’s function was to
be able to distinguish between 1kHz and 10 kHz input clocks without having a clock of
its own. It worked, but remarkably, the exact way the circuit achieved this functionality
could not be fully explained. It is evident from the research that the functionality is
tightly coupled to the physical attributes of the individual FPGA it ran on — the same
circuit did not operate correctly on other devices of the same size and family. Donlin
and Trimberger [29] suggest using the attributes of evolved circuits to extract unique keys
from each FPGA for the purpose of bitstream protection, though there doesn’t seem to
be any active research on this particular application.

5.6 Cryptographic algorithms: implementing and breaking

Though only tangentially related to our main topic, here we discuss how FPGAs are used
to implement and “break” security algorithms. There exists an extensive collection of pa-
pers starting from the mid 1990s with reports of incremental improvement in performance
for nearly every cryptographic algorithm in existence. Implementers are taking advantage
of technological advancements, and algorithmic tweaks to match, in order to improve on
the current benchmark in terms of throughput and/or resource use. Wollinger et al. [122]
provide a good summary while Synaptic Laboratories [106] maintain an on-line index
of cryptography-related cores implementations for both FPGAs and ASICs, though it
is now somewhat outdated. Anyone who has tried fairly comparing FPGA implemen-
tations from different sources, however, knows that it is a near impossible task due to
the amount of variables and inconsistency in reporting. The situation would be much
improved if primitives were used for reporting resource use (e.g. flip-flops, RAM blocks,
look-up tables) instead of the somewhat arbitrarily component-bundling definitions that
are inconsistent between devices (e.g., slices, CLBs, logic elements). Even then, without
the context of a target application as a concrete benchmark, comparing “fastest/smallest
ever” implementations is somewhat irrelevant [32].

37

FPGAs are also used as part of machines that brute force cryptographic algorithms, as
they strike a balance on the cost-performance scale between general purpose CPUs and
ASICs. Software implementations are easily made but are slow compared to ASICs, which,
in turn, are hard to design and expensive to fabricate. FPGAs are cheaper than ASICs,
better suited for most cryptographic algorithms than software, are widely available, and
are highly parallelizable. They are better at specific tasks compared to general purpose
CPUs, especially for functions that can be divided into many small pieces operating in
parallel.

Ever since DES was made into a standard, people hypothesized about the cost of a
brute force attack. The first (public) dedicated machine built for this purpose was the
Electronic Frontier Foundation’s (EFF) “Deep Crack”. Built in 1998 for $250 000, using
1536 ASICs, it broke the “RSA DES Challenge I1-2” in 56 hours [34]. In 1999, Hamer and
Chow [45] proposed cracking DES in 1040 days using the “Transmogrifier-2a” at a cost of
approximately $60 000; this machine consisted of 32 Altera FLEX 10K100 FPGAs running
at 25 MHz. Clayton and Bond [21] have describe how they broke the DES implementation
in the IBM 4758 hardware security module by exploiting a short-cut and using a low-cost
Altera FPGA development board. Kumar et al. [63] have designed “COPACOBANA”| a
$10 000 backplane with 120 low-cost Xilinx Spartan-3 FPGAs, six each on twenty modules,
operating in parallel. The researchers have used this platform as a DES key search engine
and as of September 2007, it can find a key within 6.4 days, on average. Bono et al. [15]
demonstrated the use of 16 Xilinx Spartan-3 FPGAs operating in parallel for extracting
keys from RFID-based tokens that uses a proprietary cipher, called DST40. As of late
2007, there is an on-going project [108] to cracking the A5 stream cipher in real time
using commercial FPGA modules.

Moore’s Law and the various device architectures are responsible for most of these perfor-
mance improvements. The same generic HDL code synthesized for two device generations
would nearly always show a performance increase with the latest one, and that should be
expected. For example, now that high-end FPGAs moved to 6-input LUTs, DES s-boxes
(which are the most costly part of the design) can be made with a single logic level,
guaranteeing a boost in performance over 4-input LUT architectures; some FPGAs can
perform 48 bit bit-wise logic operation at over 500 MHz, further making DES operations
much faster than previously possible. A final remark on the topic is the “NSA@home”
project [84], where recycled HDTV hardware containing 15 Virtex II PRO FPGAs are
used to built a pre-image brute force attack machine against SHA-1 that purportedly can
find a pre-image of an 8 character password hash from a 64 character set in about 24
hours. This is quite exceptional, and we will most likely see more of this recycling in the
future as FPGAs become more prevalent and the difference between old and new ones
would mainly be in specialization, rather than performance.

6 Trust, adversaries, and metrics

6.1 Trust in the flow

How can users of software and hardware be confident that these tools are indeed “honest”,
not covertly inserting malicious code or circuits into their products? Software and chip

38

verification is an option, but a prohibitively costly one. The sheer enormity of EDA
tools make this impractical, let alone the fact that vendors generally do not make their
source code available. Even if source code was available for compilation, how can one
be sure that the compiler is trustworthy? How about simulators? These may also be
corrupt. In Reflections on trusting trust, Thompson [111] elegantly discusses these issues
and concludes that “you can’t trust code that you did not totally create yourself... No
amount of source-level verification or scrutiny will protect you from using untrusted code”.
Verifying integrated circuits is even harder than software verification, especially so without
access to the design files and a complete audit along the manufacturing process.

We saw that the design process of both FPGAs and the systems that use them require
the participation of principals not under the control and supervision of the designer, and
if we accept Thompson’s assertions, we also realize that it is unavoidable to extend trust
to them. Some principals, however, may not have matching practices or attitudes towards
the protection of others’ design rights and that is why, of course, these rights are violated.
Some of this mismatch is reconciled by the motivation of companies to build and maintain
a positive reputation. The reputation of being honest, technologically advanced, quality-
driven, etc. is an asset that is slowly gained, but easily lost, and without which companies
can no longer be successful. By striving to maintain a reputation, companies are aligning
themselves with the interests of their customers to whom they provide products and
services (this, of course, assumes a competitive and open market).

Many millions of dollars are invested in designing and manufacturing an FPGA, and it is
in the interest of both the FPGA vendors and the foundries that these do not go to waste.
This necessitates many self-enforced checkpoints to assure that no flaws or deviations from
the intended design are made. For example, the foundry must deliver high-yielding wafers
that are faithful to the original design, and in turn, FPGA vendors need to provide their
customers reliable FPGAs that are faithful to the data-sheets. All this means is that there
are numerous people and procedures in place to make sure the product is as it should
be, which translates into a reasonable assurance of quality that many customers can rely
on, or trust!!. Still, colluding malicious insiders may be able to circumvent these audits,
especially in the design phase, and indeed, this is still a viable threat.

Other points where trust is involved are the continued secrecy of bitstream encoding;
trusting the manufacturing facility in which the system is built and tested not to over-
run, sell or modify the designs; core vendors supplying designs true to simulation models;
IC-packaging facilities inserting “key-loggers” into packages; and many others. Some of
these issues can be mitigated by cryptographic measures and protocols, others may not,
though many of the consideration are not technological, but economic.

6.1.1 System-level trust boundaries

There are many ways to configure an FPGA: through a network, PC, microprocessor,
non-volatile memory, etc. Any of these devices can perform security related tasks such
as encryption and authentication. Then, however, these devices and their environment
must be trusted and so does the communication path to the FPGA. At the system level,

I ASIC design and manufacturing has similar problems, but with FPGAs having the advantage of
being generic, such that tampering may be detected with higher probability simply because it has a
much larger user-base.

39

therefore, we can define two trust boundaries that will assist in evaluating and designing
defense mechanisms:

e FPGA trust. Only the FPGA is trusted for security operations on data it is pro-
cessing, including the bitstream. In this setting, any external source of information,
whether local or remote, is untrusted until validated and no operation to do so is
delegated to other devices. All security mechanisms reside within the FPGA itself
with the result of having all configuration methods are supported.

e Peripheral trust. The trust boundary is extended to the system level to include other
components. Here, security related operations may be performed by external devices
which are within the trusted perimeter. Once in this perimeter, the bitstream can be
transmitted in the clear, as the system is assumed to be in a protected environment
and be adequately tamper-proof.

When evaluating risk from attacks and the effectiveness of defenses, it is important to
first determine the appropriate trust boundary.

6.2 Adversaries

Adversaries, attackers, thieves, enemies, “bad people”, etc. are trying to either steal
goods or information without compensation to the rightful owner, or use systems in an
unintended way. How we label these people depends on our perspective, and in any
security evaluation we must identify them and have a good estimate of their capabilities
in order to arrive to a good defense strategy. It is common to quote the Abraham et al. [2]
adversary classification system from 1991 — clever outsiders, knowledgeable insiders,
funded organizations — to assist the analysis of threats. This system, however, seems
too coarse and perhaps outdated to account for the developments of that past 15 years.
“Clever outsiders” are no longer operating in isolation, most likely being a part of an
on-line information-sharing community; they now also have access to expensive tools
through hourly rentals, ones that were previously considered to be only accessible to
“funded organizations”. Funded organizations is too broad of a definition to be very
useful today: governments have effectively infinite amounts of money, resources, and can
ignore any kind of law or copyright. Defending against these types of organization is
incredibly challenging. But what about a criminal organization? They are well funded
and employ very clever and capable crooks, but have constraints that allow a designer
many more defense options. The conclusion is that there are unique adversaries for each
system, ones that need to be identified and placed on a continuum according to their
resources and the potential harm they may bring. Once those are identified, an adequate
defense strategy needs to be established and implemented.

6.3 Security levels of hardware modules

Although we should design our defenses per our application’s threats, it is sometimes
useful, or mandatory if you are a security-conscious system designer, to evaluate it against
a set criteria. The most often used criteria is the U.S. Government’s Security requirements

40

for cryptographic modules, FIPS 140-2 [81], which defines levels of security for hardware
devices. In July 2007, a draft of an updated publication, FIPS 140-3 [81], has been
open for public comment before becoming a publication. This draft outlines the following
5-level classification criteria, each new level building on top of the previous one:

e Security Level 1: No specific physical security mechanisms.

e Security Level 2: Tamper evident coating or seals; role-based authentication; oper-
ating system needs to provide access control facilities and an audit trail pertaining
to sensitive/cryptographic security parameters (SSP/CSP).

e Security Level 3: High probability of detection and response to physical tampering
attempts; zeroization of CSPs; identity-based authentication; physically separated,
trusted, and audited channel for entry and read-out of CSPs; resistance to timing
analysis; OS preventing user-level modification of SSPs; trusted channel protects
leakage of CSPs between software modules.

e Security Level 4: Detection and response to all physical tampering attempts; im-
mediate zeroization of CSPs upon tampering; two-factor authentication; protection
against environmental tampering; protection against power analysis; encryption and
authentication of CSPs when module is not in use; robust audit of all operator ac-
cesses to data.

e Security Level 5: Encryption and authentication of all SSPs while module is not
in use; opacity to non-visual radiation; zeroization circuitry is protected against
disablement; protection against electromagnetic analysis; environmental failure pro-
tection.

Let us now examine volatile FPGAs with respect to these requirements. The standard
defines three types of modules: single-chip, multiple-chip embedded, and multiple-chip
stand-alone. The most interesting is the evaluation of the FPGA as a single-chip module
since, as we discussed in Section 6.1, if the trust is peripheral all security functions can
be delegated to other devices. With the knowledge we have gained so far, we are well
equipped to do a preliminary evaluation of how volatile FPGAs fare with regards to these
requirements.

Authentication: Role-based authentication is already required in SL2 and we have dis-
cussed the need for this security enhancement in terms of bitstreams. With basic bit-
stream authentication there will be a single role, the “administrator”, with additional
keys enabling further role- and identity-based authentication functionality. The critical
part is the initial configuration. Once its authenticity has been established, additional
authentication of data and two-factor authentication can be done using the user logic.
Tamper proofing and resistance: as mentioned before, a Xilinx and NSA collaboration
brief [74] refers to a “security monitor” to enhance security properties from within the
FPGA, which is certainly a step towards embedded tamper detection for the FPGA to
function as a single-chip module. However, already at SL2 there is a requirement for an
opaque enclosure, which will require the die and printed circuit carrier to be encased in
potting material. To accommodate for the requirements of higher levels, the die must

41

permanently cease to operate upon tampering, and mesh detectors added along with ac-
tive, always-on, circuitry to monitor it and zeroize SSP/CSPs when the FPGA is not in
use. Heat density and dissipation may be a problem with potting, as are environmental
conditions triggering the tamper detection mechanisms during transport. Audit: this is
not currently possible in FPGAs because there is no way to store information after power-
down; it may require a stacked-die approach with a secure trusted interface (it is unclear
whether this qualifies as a single-chip module under the definition of the publication,
though), or having non-volatile memory inside the FPGA. Side-channels: timing analysis
could be mitigated by the designer, while further study of power and electromagnetic
analysis is still required. Non-visual radiation attacks: these were discussed in Section 7?7
and the available solutions against them are quite robust. The publication draft also dis-
cusses requirements for the software running in the module. Is the bitstream considered
“software”? That’s not an easy question to answer, but some of the requirements, such
as built-in self tests and integrity checks, can certainly be satisfied through the digital
design.

The conclusion is that volatile FPGAs, in their current form and on their own, will
not pass Security Level 2 certification, but with the addition of external authentication,
temper-evidence and resistance mechanisms and audit facilities, they can be certified for
higher levels as a single-chip modules.

7 Conclusion

Since the late 1990s we have seen volatile FPGAs advance from simple logic devices to
large, complex, “systems-on-chip” that may no longer be handled by a single engineer
implementing simple logic functions. FPGA designs are big, complex, and require a large
investment by system developers. This survey has captured the current state for the
“FPGA security” field, provided the foundations for future discussion and introduced
readers to possible attacks and defenses. Interesting and relevant research topics were
described along with the social and economic aspects of the field. Most readers would
only find a subset of the topics covered relevant for their work, but the purpose was to
provide a full picture in order for those readers to be better informed when constructing a
threat model and corresponding defense mechanism, as a system is specified and designed.
Considering the fast pace of the industry and research activity, it is likely that this survey
will need to be updated on a regular basis, but most of the concepts can be expected to
remain the same.

In 2002, Tom Kean summarized: “Lack of design security has long been the skeleton
lurking in the closet of the SRAM FPGA industry” [54]. As we have seen, there are
still many open problems and items to explore for enhancing the security of FPGAs and
designs made for them.

Acknowledgments

My research is funded by Xilinx Inc., and I am grateful for their support. My gratitude
is also extended to the people who invested their time reading and commenting on this

42

manuscript as it was written: Ross Anderson, Richard Clayton, Tom Kean, Markus
Kuhn, Steven Murdoch, Christof Paar, Patrick Schaumont, Francois-Xavier Standaert,
and Robert Watson.

References

1]

A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid. IP watermarking techniques: sur-
vey and comparison. In IEEE International Workshop on System-on-Chip for Real-Time
Applications, 2003. http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=/iel5/
8609/27279/01213006 . pdf

D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens. Transaction security
system. IBM Systems Journal, 30(2):206-229, 1991. http://www.research.ibm.com/
journal/sj/302/ibmsj3002G.pdf

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s): Attacks
and assessment methodologies. Technical Report 2001/037, IBM Watson Research Center,
2001. http://www.research.ibm.com/intsec/emf-paper.ps

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s). In
Cryptographic Hardware and Embedded Systems Workshop, volume 2523 of LNCS, pages
29-45, August 2002. http://www.springerlink.com/content/mvtxbq9qa287g7c6/

D. Agrawal, J. R. Rao, and P. Rohatgi. Multi-channel attacks. In Cryptographic Hard-
ware and Embedded Systems Workshop, volume 2779 of LNCS, pages 2-16, Septem-
ber 2003. http://researchweb.watson.ibm.com/people/a/agrawal/publications/
CryptoBytes2003.pdf

Alliance for Gray Market and Counterfeit Abatement. Managing the risks of counterfeit-
ing in the information technology industry, August 2006. http://www.agmaglobal.org/
press_events/press_docs/Counterfeit_WhitePaper_Final.pdf

Altera Corp. http://www.altera.com

Court issues preliminary injunction against Clear Logic in Altera litigation, Al-
tera Corp., July 2002. http://www.altera.com/corporate/news_room/releases/
releases_archive/2002/corporate/nr-clearlogic.html

R. J. Anderson. Security engineering: A guide to building dependable distributed systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001. ISBN 0471389226. http://wuw.
cl.cam.ac.uk/~rjal4/book.html

R. J. Anderson and M. G. Kuhn. Low cost attacks on tamper resistant devices. In
International Workshop on Security Protocols, pages 125-136, 1998. http://www.cl.
cam.ac.uk/~mgk25/tamper2.pdf

R. J. Anderson and M. G. Kuhn. Tamper resistance — a cautionary note. In USENIX
Workshop on Electronic Commerce Proceedings, pages 1-11, November 1996. http://
www.cl.cam.ac.uk/~mgk25/tamper.pdf

R. J. Anderson, M. Bond, J. Clulow, and S. P. Skorobogatov. Cryptographic processors —
a survey. Technical Report 641, University of Cambridge, Computer Laboratory, August
2005. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf

K. Austin. Data security arrangements for semiconductor programmable devices,
United States Patent Office, 1995. http://patftl.uspto.gov/netacgi/nph-Parser?
patentnumber=5388157

J. Black. “Authenticated encryption” in Encyclopedia of Cryptography and Security,
section A, pages 10-21. Authenticated encryption. Springer, 2005. http://wuw.cs.
colorado.edu/~jrblack/papers/ae.pdf

43

http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=/iel5/8609/27279/01213006.pdf
http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=/iel5/8609/27279/01213006.pdf
http://www.research.ibm.com/journal/sj/302/ibmsj3002G.pdf
http://www.research.ibm.com/journal/sj/302/ibmsj3002G.pdf
http://www.research.ibm.com/intsec/emf-paper.ps
http://www.springerlink.com/content/mvtxbq9qa287g7c6/
http://researchweb.watson.ibm.com/people/a/agrawal/publications/CryptoBytes2003.pdf
http://researchweb.watson.ibm.com/people/a/agrawal/publications/CryptoBytes2003.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.altera.com
http://www.altera.com/corporate/news_room/releases/releases_archive/2002/corporate/nr-clearlogic.html
http://www.altera.com/corporate/news_room/releases/releases_archive/2002/corporate/nr-clearlogic.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~mgk25/tamper2.pdf
http://www.cl.cam.ac.uk/~mgk25/tamper2.pdf
http://www.cl.cam.ac.uk/~mgk25/tamper.pdf
http://www.cl.cam.ac.uk/~mgk25/tamper.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=5388157
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=5388157
http://www.cs.colorado.edu/~jrblack/papers/ae.pdf
http://www.cs.colorado.edu/~jrblack/papers/ae.pdf

[15]

[16]

[21]

[22]
23]

[24]

[30]

S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, and M. Szydlo. Security analysis
of a cryptographically-enabled RFID device. In USENIX Security Symposium, pages 1-16,
July-August 2005. http://wuw.usenix.org/events/sec05/tech/bono/bono.pdf

L. Bossuet, G. Gogniat, and W. Burleson. Dynamically configurable security for SRAM
FPGA bitstreams. April 2004. http://www.lilianbossuet.com/en/Doc/publications/
Bossuet_RAWO04.pdf

M. Bucci, L. Giancane, R. Luzzi, G. Scotti, and A. Trifiletti. Enhancing power analysis
attacks against cryptographic devices. In Clircuits and Systems Symposium, May 2006.
http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?arnumber=1693232

J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkin-
son, K. Fenton, D. A. Allwood, and M. T. Bryan. Forgery: ‘fingerprinting’ documents
and packaging. Nature, 436(7050):475, July 2005. http://www.ingeniatechnology.com/
docs/download.php?file=FingerprintingDocumentsAndPackaging.pdf

V. Carlier, H. Chabanne, E. Dottax, and H. Pelletier. Electromagnetic side channels
of an FPGA implementation of AES. Cryptology ePrint Archive, (145), 2004. http:
//eprint.iacr.org/2004/145.pdf

B. D. Christiansen. FPGA security through decoy circuits. Master’s thesis, Air Force
Institute of Technology, Ohio, USA, March 2006. http://stinet.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf

R. Clayton and M. Bond. Experience using a low-cost FPGA design to crack DES keys. In
Cryptographic Hardware and Embedded Systems Workshop, volume 2523 of LNCS, pages
579-592, 2002. http://www.cl.cam.ac.uk/~rncl/descrack/DEScracker.pdf

J. H. Conway. On numbers and games. Academic Press, 1976. http://en.wikipedia.
org/wiki/On_Numbers_and_Games

J. Daemen and V. Rijmen. AES proposal: Rijndael, September 1999. http://www.gel.
ulaval.ca/~klein/maitrise/aes/rijndael.pdf

A. S. Daniel Ziener and T. Jiirgen. Identifying FPGA IP-Cores based on lookup ta-
ble content analysis. In Field Programmable Logic and Applications, pages 481-486,
August 2006. http://wwwl2.informatik.uni-erlangen.de/publications/pub2006/
zienerfpl06.pdf

A. Dauman. An open IP encryption flow permits industry-wide interoperability, Synplic-
ity, Inc., June 2006. http://www.synplicity.com/literature/whitepapers/pdf/ip_
encryption_wp.pdf

E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel, G. Vandenbosch,
and I. Verbauwhede. Electromagnetic analysis attack on an FPGA implementation of an
elliptic curve cryptosystem. In EUROCON: Proceedings of the International Conference
on “Computer as a tool”, pages 1879-1882, November 2005. http://wuw.sps.ele.tue.
nl/members/m. j.bastiaans/spc/demulder.pdf

E. De Mulder, S. B. Ors, B. Preneel, and I. Verbauwhede. Differential electromag-
netic attack on an FPGA implementation of elliptic curve cryptosystems. In World Au-
tomation Congress, July 2006. https://www.cosic.esat.kuleuven.be/publications/
article-737.pdf

J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems. A
practical implementation of the timing attack. In CARDIS, pages 167-182, 1998. http:
//users.belgacom.net/dhem/papers/CG1998_1.pdf

A. P. Donlin and S. M. Trimberger. Fuvolved circuits for bitstream protection, United
States Patent Office, May 2005. http://patftl.uspto.gov/netacgi/nph-Parser?
patentnumber=6894527

S. Drimer. Authentication of FPGA bitstreams: why and how. In Applied Reconfigurable

44

http://www.usenix.org/events/sec05/tech/bono/bono.pdf
http://www.lilianbossuet.com/en/Doc/publications/Bossuet_RAW04.pdf
http://www.lilianbossuet.com/en/Doc/publications/Bossuet_RAW04.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1693232
http://www.ingeniatechnology.com/docs/download.php?file=FingerprintingDocumentsAndPackaging.pdf
http://www.ingeniatechnology.com/docs/download.php?file=FingerprintingDocumentsAndPackaging.pdf
http://eprint.iacr.org/2004/145.pdf
http://eprint.iacr.org/2004/145.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf
http://www.cl.cam.ac.uk/~rnc1/descrack/DEScracker.pdf
http://en.wikipedia.org/wiki/On_Numbers_and_Games
http://en.wikipedia.org/wiki/On_Numbers_and_Games
http://www.gel.ulaval.ca/~klein/maitrise/aes/rijndael.pdf
http://www.gel.ulaval.ca/~klein/maitrise/aes/rijndael.pdf
http://www12.informatik.uni-erlangen.de/publications/pub2006/zienerfpl06.pdf
http://www12.informatik.uni-erlangen.de/publications/pub2006/zienerfpl06.pdf
http://www.synplicity.com/literature/whitepapers/pdf/ip_encryption_wp.pdf
http://www.synplicity.com/literature/whitepapers/pdf/ip_encryption_wp.pdf
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf
https://www.cosic.esat.kuleuven.be/publications/article-737.pdf
https://www.cosic.esat.kuleuven.be/publications/article-737.pdf
http://users.belgacom.net/dhem/papers/CG1998_1.pdf
http://users.belgacom.net/dhem/papers/CG1998_1.pdf
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=6894527
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=6894527

31]

[32]

[39]

[40]

[41]

[42]

[43]

Computing, volume 4419 of LNCS, pages 73-84, March 2007. http://www.cl.cam.ac.
uk/~sd410/papers/bsauth.pdf

S. Drimer and S. J. Murdoch. Keep your enemies close: Distance bounding against smart-
card relay attacks. In USENIX Security Symposium, August 2007. http://www.cl.cam.
ac.uk/~sd410/papers/sc_relay.pdf

S. Drimer, T. Giineysu, and C. Paar. DSPs, BRAMs and a pinch of logic: new recipes
for AES on FPGAs. In The Sizteenth Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2008. http://www.cl.cam.ac.uk/~sd410/papers/
aes_dsp.pdf

J. Edwards. No room for second place: Xilinx and Altera slug it out for supremacy in the
changing PLD market. EDN Magazine, June 2006. http://www.edn.com/index.asp?
layout=article&articleid=CA6339519

Electronic Frontier Foundation. Cracking DES: Secrets of encryption research, wiretap
politics and chip design. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998. ISBN
1565925203. http://cryptome.org/cracking-des/cracking-des.htm

B. Fechner. Dynamic delay-fault injection for reconfigurable hardware. In Parallel and
Distributed Processing IEEE Symposium, page 282.1, April 2005. http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=1420244

K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In Cryptographic Hardware and Embedded Systems Workshop, volume 2162 of LNCS,
pages 251-261, May 2001. http://www.gemplus.com/smart/rd/publications/pdf/
GMOOlema.pdf

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon physical random functions.
In ACM Conference on Computer and Communications Security, pages 148-160, 2002.
http://csg.lcs.mit.edu/pubs/memos/Memo-456/memo-456.pdf

T. G. W. Gordon and P. J. Bentley. On evolvable hardware. In Soft Computing in In-
dustrial Electronics, pages 279-323, 2002. http://wuw.cs.ucl.ac.uk/staff/t.gordon/
scie.pdf

W. S. Gosset. Atmel at40k/94k configuration format documentation (Usenet
comp.arch.fpga), August 2005. http://groups.google.com/group/comp.arch.fpga/
msg/a90fca82aafe8e2b

J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs and their use
for IP protection. In Cryptographic Hardware and Embedded Systems Workshop, volume
4727 of LNCS, pages 63-80, September 2007. http://www.springerlink.com/index/
u64160h472125824 . pdf

S. A. Guccione, D. Levi, and P. Sundararajan. Jbits: A java-based interface for reconfig-
urable computing. In Military and Aerospace Applications of Programmable Devices and
Technologies, 1999. http://www.io.com/~guccione/Papers/MAPPLD/JBitsMAPPLD.pdf
P. Gutmann. Data remanence in semiconductor devices. USENIX Security Symposium,
pages 39-54, August 2001. http://www.cypherpunks.to/~peter/usenix01.pdf

P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In USENIX
Workshop on Smartcard Technology, pages 77-89, July 1996. http://www.cs.cornell.
edu/people/clarkson/secdg/papers.sp06/secure_deletion.pdf

I. Hadzié¢, S. Udani, and J. M. Smith. FPGA viruses. In Field Programmable Logic and
Applications, volume 1673 of LNCS, pages 291-300, 1999. http://www.springerlink.
com/content/9wnbmbeqgpjvlcug/BodyRef /PDF/558_10705539_Chapter_30.pdf

I. Hamer and P. Chow. DES cracking on the Transmogrifier 2a. In Cryptographic Hardware
and Embedded Systems Workshop, volume 1717 of LNCS, pages 13—24, 1999. http://www.
springerlink.com/content/bqllltjjm24h671a/fulltext.pdf

45

http://www.cl.cam.ac.uk/~sd410/papers/bsauth.pdf
http://www.cl.cam.ac.uk/~sd410/papers/bsauth.pdf
http://www.cl.cam.ac.uk/~sd410/papers/sc_relay.pdf
http://www.cl.cam.ac.uk/~sd410/papers/sc_relay.pdf
http://www.cl.cam.ac.uk/~sd410/papers/aes_dsp.pdf
http://www.cl.cam.ac.uk/~sd410/papers/aes_dsp.pdf
http://www.edn.com/index.asp?layout=article&articleid=CA6339519
http://www.edn.com/index.asp?layout=article&articleid=CA6339519
http://cryptome.org/cracking-des/cracking-des.htm
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1420244
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1420244
http://www.gemplus.com/smart/rd/publications/pdf/GMO01ema.pdf
http://www.gemplus.com/smart/rd/publications/pdf/GMO01ema.pdf
http://csg.lcs.mit.edu/pubs/memos/Memo-456/memo-456.pdf
http://www.cs.ucl.ac.uk/staff/t.gordon/scie.pdf
http://www.cs.ucl.ac.uk/staff/t.gordon/scie.pdf
http://groups.google.com/group/comp.arch.fpga/msg/a90fca82aafe8e2b
http://groups.google.com/group/comp.arch.fpga/msg/a90fca82aafe8e2b
http://www.springerlink.com/index/u64160h472125824.pdf
http://www.springerlink.com/index/u64160h472125824.pdf
http://www.io.com/~guccione/Papers/MAPPLD/JBitsMAPPLD.pdf
http://www.cypherpunks.to/~peter/usenix01.pdf
http://www.cs.cornell.edu/people/clarkson/secdg/papers.sp06/secure_deletion.pdf
http://www.cs.cornell.edu/people/clarkson/secdg/papers.sp06/secure_deletion.pdf
http://www.springerlink.com/content/9wnbm5eqgpjvlcug/BodyRef/PDF/558_10705539_Chapter_30.pdf
http://www.springerlink.com/content/9wnbm5eqgpjvlcug/BodyRef/PDF/558_10705539_Chapter_30.pdf
http://www.springerlink.com/content/bqllltjjm24h671a/fulltext.pdf
http://www.springerlink.com/content/bqllltjjm24h671a/fulltext.pdf

[46]

[47]

[48]

[49]

G. P. Hancke. A practical relay attack on ISO 14443 proximity cards, 2005. http:
//www.cl.cam.ac.uk/~gh275/relay.pdf

G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol. In Security and
Privacy for Emerging Areas in Communications Networks, pages 67-73, 2005. http:
//www.cl.cam.ac.uk/~gh275/distance.pdf

D. E. Holcomb, W. P. Burleson, and K. Fu. Initial SRAM state as a fingerprint
and source of true random numbers for RFID tags. In Proceedings of the Confer-
ence on RFID Security, July 2007. http://prisms.cs.umass.edu/~kevinfu/papers/
holcomb-FERNS-RFIDSecO7.pdf

T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen,
and C. Irvine. Moats and drawbridges: An isolation primitive for reconfigurable hardware
based systems. In IEEE Symposium on Security and Privacy, pages 281-295, 2007. http:
//www.cs.ucsb.edu/~sherwood/pubs/IEEESP-moats. pdf

iRoC Technologies. Radiation results of the SER test of Actel, Xilinx and Altera FPGA
instances, 2004. http://www.actel.com/documents/0OverviewRadResultsIROC. pdf

A. K. Jain, L. Yuan, P. R. Pari, and G. Qu. Zero overhead watermarking technique for
FPGA designs. In ACM Great Lakes symposium on VLSI, pages 147-152, 2003. http:
//www.ece.umd.edu/~gangqu/research/papers/c027.pdf

A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe. Constraint-based watermarking techniques for design
IP protection. IEEE Transactions on CAD of Integrated Circuits and Systems, 20(10):
1236-1252, 2001. http://www.eecs.umich.edu/~imarkov/pubs/jour/j009.pdf

T. Karnik, P. Hazucha, and J. Patel. Characterization of soft errors caused by single event
upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1
(2):128-143, 2004. http://ieeexplore.ieee.org/iel5/8858/29698/01350778.pdf

T. Kean. Secure configuration of Field Programmable Gate Arrays. In Field Programmable
Logic and Applications, pages 142-151, 2001. http://www.algotronix.com/content/
security’%20FPL%202001. pdf

T. Kean. Cryptographic rights management of FPGA intellectual property cores. In Field
Programmable Gate Arrays Symposium, pages 113-118, 2002. http://www.algotronix.
com/content/security%20fpga2002.pdf

D. Kessner. Copy protection for SRAM based FPGA designs, May 2000. http://web.
archive.org/web/20031010002149/http://free-ip.com/copyprotection.html

J. Khatib. Open hardware design trend, January 2004. http://www.opencores.org/
articles.cgi/view/12

N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kan-
demir, and V. Narayanan. Leakage current: Moore’s law meets static power. Computer,
36(12):68-75, 2003. http://www.ece.northwestern.edu/~rjoseph/ece510-fall12005/
papers/static_power.pdf

P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Cryptology Conference on Advances in Cryptology, volume 1109 of
LNCS, pages 104-113, 1996. http://www.cryptography.com/resources/whitepapers/
TimingAttacks.pdf

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Cryptology Conference
on Advances in Cryptology, volume 1666 of LNCS, pages 388-397, 1999. http://www.
cryptography.com/resources/whitepapers/DPA.pdf

0. Kommerling and M. G. Kuhn. Design principles for tamper-resistant smartcard
processors. In USENIX Workshop on Smartcard Technology, pages 9-20, May 1999.
http://wuw.cl.cam.ac.uk/~mgk25/sc99-tamper . pdf

46

http://www.cl.cam.ac.uk/~gh275/relay.pdf
http://www.cl.cam.ac.uk/~gh275/relay.pdf
http://www.cl.cam.ac.uk/~gh275/distance.pdf
http://www.cl.cam.ac.uk/~gh275/distance.pdf
http://prisms.cs.umass.edu/~kevinfu/papers/holcomb-FERNS-RFIDSec07.pdf
http://prisms.cs.umass.edu/~kevinfu/papers/holcomb-FERNS-RFIDSec07.pdf
http://www.cs.ucsb.edu/~sherwood/pubs/IEEESP-moats.pdf
http://www.cs.ucsb.edu/~sherwood/pubs/IEEESP-moats.pdf
http://www.actel.com/documents/OverviewRadResultsIROC.pdf
http://www.ece.umd.edu/~gangqu/research/papers/c027.pdf
http://www.ece.umd.edu/~gangqu/research/papers/c027.pdf
http://www.eecs.umich.edu/~imarkov/pubs/jour/j009.pdf
http://ieeexplore.ieee.org/iel5/8858/29698/01350778.pdf
http://www.algotronix.com/content/security%20FPL%202001.pdf
http://www.algotronix.com/content/security%20FPL%202001.pdf
http://www.algotronix.com/content/security%20fpga2002.pdf
http://www.algotronix.com/content/security%20fpga2002.pdf
http://web.archive.org/web/20031010002149/http://free-ip.com/copyprotection.html
http://web.archive.org/web/20031010002149/http://free-ip.com/copyprotection.html
http://www.opencores.org/articles.cgi/view/12
http://www.opencores.org/articles.cgi/view/12
http://www.ece.northwestern.edu/~rjoseph/ece510-fall2005/papers/static_power.pdf
http://www.ece.northwestern.edu/~rjoseph/ece510-fall2005/papers/static_power.pdf
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/DPA.pdf
http://www.cryptography.com/resources/whitepapers/DPA.pdf
http://www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf

[62]

[63]

(78]

M. G. Kuhn. Compromising emanations: eavesdropping risks of computer displays.
Technical Report 577, University of Cambridge, Computer Laboratory, December 2003.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-577.pdf

S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with
COPACOBANA - a cost-optimized parallel code breaker. In Cryptographic Hardware
and Embedded Systems Workshop, volume 4249 of LNCS, pages 101-118, October 2006.
http://www.springerlink.com/content/bb5gp2783243w1964/fulltext.pdf

J. Lach, W. H. Mangione-Smith, and M. Potkonjak. FPGA fingerprinting techniques for
protecting intellectual property. In Custom Integrated Circuits Conference, 1998. http:
//www.ieeexplore.ieee.org/ield/5666/15173/00694986 . pdf?arnumber=694986

J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Robust FPGA intellectual property
protection through multiple small watermarks. In ACM/IEEE Conference on Design
Automation, pages 831-836, 1999. http://portal.acm.org/citation.cfm?id=310080
Lattice Semiconductor Corp. http://www.latticesemi.com

T. V. Le and Y. Desmedt. Cryptanalysis of UCLA watermarking schemes for intellec-
tual property protection. In Workshop on Information Hiding, volume 2578 of LNCS,
pages 213-225, 2002. http://www.springerlink.com/content/0qp519u76cehw6gv/
fulltext.pdf

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A technique to
build a secret key in integrated circuits for identification and authentication application.
In Proceedings of the Symposium on VLSI Circuits, pages 176-159, 2004. http://people.
csail.mit.edu/suh/papers/vlsiO4.pdf

A. Lesea. jbits & reverse engineering (Usenet comp.arch.fpga), September 2005. http:
//groups.google.com/group/comp.arch.fpga/msg/821968d7dcb50277

A. Lesea. Personal communication, January 2006

A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke. The Rosetta experiment: At-
mospheric soft error rate testing in differing technology FPGAs. IEEFE Transactions on De-
vice and Materials Reliability, 5(3):317-328, September 2005. http://www.saardrimer.
com/docs/IEEE_Rosetta.pdf

D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. Extracting
secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 13(10):1200-1205, October 2005. http://ieeexplore.ieee.org/xpls/
abs_all. jsp?arnumber=1561249

S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing the secrets
of smart cards. Springer-Verlag, Secaucus, NJ, USA, 2007. ISBN 978-0-387-30857-9.
http://www.dpabook.org/

M. McLean and J. Moore. FPGA-based single chip cryptographic solution—securing
FPGAs for red-black systems. Military Embedded Systems, March 2007. http://wuw.
mil-embedded.com/PDFs/NSA.Mar07.pdf

A. Megacz. A library and platform for FPGA bitstream manipulation. Field-Programmable
Custom Computing Machines Symposium, pages 45-54, April 2007. http://www.megacz.
com/research/megacz-fccm07 . pdf

T. S. Messerges. Power analysis attack countermeasures and their weaknesses. In
Communications, Electromagnetics, Propagation and Signal Processing Workshop, 2000.
http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf

K. D. Mitnick and W. L. Simon. The art of deception: Controlling the human element
of security. John Wiley & Sons, Inc., New York, NY, USA, 2002. ISBN 0471237124.
http://portal.acm.org/citation.cfm?id=861316

K. Morris. All is not SRAM - a survey of flash, antifuse, and EE programmable logic.

47

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-577.pdf
http://www.springerlink.com/content/b5gp2783243w1964/fulltext.pdf
http://www.ieeexplore.ieee.org/iel4/5666/15173/00694986.pdf?arnumber=694986
http://www.ieeexplore.ieee.org/iel4/5666/15173/00694986.pdf?arnumber=694986
http://portal.acm.org/citation.cfm?id=310080
http://www.latticesemi.com
http://www.springerlink.com/content/0qp5l9u76cehw6gv/fulltext.pdf
http://www.springerlink.com/content/0qp5l9u76cehw6gv/fulltext.pdf
http://people.csail.mit.edu/suh/papers/vlsi04.pdf
http://people.csail.mit.edu/suh/papers/vlsi04.pdf
http://groups.google.com/group/comp.arch.fpga/msg/821968d7dcb50277
http://groups.google.com/group/comp.arch.fpga/msg/821968d7dcb50277
http://www.saardrimer.com/docs/IEEE_Rosetta.pdf
http://www.saardrimer.com/docs/IEEE_Rosetta.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1561249
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1561249
http://www.dpabook.org/
http://www.mil-embedded.com/PDFs/NSA.Mar07.pdf
http://www.mil-embedded.com/PDFs/NSA.Mar07.pdf
http://www.megacz.com/research/megacz-fccm07.pdf
http://www.megacz.com/research/megacz-fccm07.pdf
http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf
http://portal.acm.org/citation.cfm?id=861316

FPGA and Programmable Logic Journal, February 2004. http://www.fpgajournal.com/
articles/sram.htm

D. C. Musker. Protecting and exploiting intellectual property in electronics. IBC Confer-
ences, June 1998. http://www. jenkins-ip.com/serv/serv_6.htm

Aerospace science and technology dictionary, National Aeronautics and Space Adminis-
tration, 2006. http://www.hq.nasa.gov/office/hqlibrary/aerospacedictionary/
National Institute of Standards, U.S. Department of Commerce. http://www.nist.gov
E. Normand. Single event upset at ground level. [IEEE Transactions on Nuclear
Science, pages 2742-2750, December 1996. http://www.boeing.com/assocproducts/
radiationlab/publications/SEU_at_Ground_Level.pdf

J.-B. Note and E. Rannaud. From the bitstream to the netlist. Technical report,
Département d‘informatique Ecole Normale Supérieure, September 2007. http://islsm.
org/~jb/debit/bitstream.pdf

NSA@home, September 2007. http://nsa.unaligned.org/

S. B. Ors, E. Oswald, and B. Preneel. Power-analysis attacks on an FPGA — first ex-
perimental results. In Cryptographic Hardware and Embedded Systems Workshop, volume
2779 of LNCS, pages 35-50, September 2003. http://www.iaik.tugraz.at/Research/
sca-lab/publications/pdf/0rs2003Power-AnalysisAttackson.pdf

R. S. Pappu. Physical one-way functions. PhD thesis, Massachusetts Institute of Technol-
ogy, March 2001. http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powt.
pdf

R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions.
Science, 297:2026-2030, 2002. http://web.media.mit.edu/~brecht/papers/02.PapEA.
powf .pdf

M. M. Parelkar. Authenticated encryption in hardware. Master’s thesis, George Ma-
son University, Fairfax, VA, USA, 2005. http://mason.gmu.edu/~mparelka/reports/
Milind_Thesis_pdf.pdf

M. M. Parelkar and K. Gaj. Implementation of EAX mode of operation for FPGA bit-
stream encryption and authentication. In Field Programmable Technology, pages 335-336,
December 2005. http://mason.gmu.edu/~mparelka/pdfs/fpt05.pdf

J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures and counter-
measures for smart cards. In E-SMART: Proceedings of the International Conference
on Research in Smart Cards, pages 200-210, 2001. http://www.springerlink.com/
content/chmydkq8x5tgdrce/fulltext.pdf

G. Seamann. FPGA bitstreams and open designs, April 2000. http://web.archive.org/
web/20050831135514/http://www.opencollector.org/news/Bitstream/

L. Sekanina. Towards evolvable IP cores for FPGAs. In NASA/DoD Conference on
Evolvable Hardware, pages 145-154, 2003. http://www.fit.vutbr.cz/~sekanina/publ/
eh03/eh03b. pdf

L. Sekanina and S. Friedl. An evolvable combinational unit for FPGAs. Comput-
ing and Informatics, 23(5):461-486, 2004. http://www.fit.vutbr.cz/~sekanina/publ/
cai/caiO4.pdf

L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power consumption in Virtex-II
FPGA family. In Field Programmable Gate Arrays Symposium, pages 157-164, 2002.
http://post.queensu.ca/~shangl/papers/shang02feb.pdf

E. Simpson and P. Schaumont. Offline hardware /software authentication for reconfigurable
platforms. In Cryptographic Hardware and Embedded Systems Workshop, volume 4249 of
LNCS, pages 311-323, October 2006. http://rijndael.ece.vt.edu/schaum/papers/
2006ches.pdf

48

http://www.fpgajournal.com/articles/sram.htm
http://www.fpgajournal.com/articles/sram.htm
http://www.jenkins-ip.com/serv/serv_6.htm
http://www.hq.nasa.gov/office/hqlibrary/aerospacedictionary/
http://www.nist.gov
http://www.boeing.com/assocproducts/radiationlab/publications/SEU_at_Ground_Level.pdf
http://www.boeing.com/assocproducts/radiationlab/publications/SEU_at_Ground_Level.pdf
http://islsm.org/~jb/debit/bitstream.pdf
http://islsm.org/~jb/debit/bitstream.pdf
http://nsa.unaligned.org/
http://www.iaik.tugraz.at/Research/sca-lab/publications/pdf/Ors2003Power-AnalysisAttackson.pdf
http://www.iaik.tugraz.at/Research/sca-lab/publications/pdf/Ors2003Power-AnalysisAttackson.pdf
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf
http://web.media.mit.edu/~brecht/papers/02.PapEA.powf.pdf
http://web.media.mit.edu/~brecht/papers/02.PapEA.powf.pdf
http://mason.gmu.edu/~mparelka/reports/Milind_Thesis_pdf.pdf
http://mason.gmu.edu/~mparelka/reports/Milind_Thesis_pdf.pdf
http://mason.gmu.edu/~mparelka/pdfs/fpt05.pdf
http://www.springerlink.com/content/chmydkq8x5tgdrce/fulltext.pdf
http://www.springerlink.com/content/chmydkq8x5tgdrce/fulltext.pdf
http://web.archive.org/web/20050831135514/http://www.opencollector.org/news/Bitstream/
http://web.archive.org/web/20050831135514/http://www.opencollector.org/news/Bitstream/
http://www.fit.vutbr.cz/~sekanina/publ/eh03/eh03b.pdf
http://www.fit.vutbr.cz/~sekanina/publ/eh03/eh03b.pdf
http://www.fit.vutbr.cz/~sekanina/publ/cai/cai04.pdf
http://www.fit.vutbr.cz/~sekanina/publ/cai/cai04.pdf
http://post.queensu.ca/~shangl/papers/shang02feb.pdf
http://rijndael.ece.vt.edu/schaum/papers/2006ches.pdf
http://rijndael.ece.vt.edu/schaum/papers/2006ches.pdf

[96]

[97]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107)
[108]
[109]
[110]

[111]

[112]

S. P. Skorobogatov. Semi-invasive attacks — a new approach to hardware security analysis.
Technical Report 630, University of Cambridge, Computer Laboratory, April 2005. http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

S. P. Skorobogatov. Low temperature data remanence in static RAM. Technical Report
536, University of Cambridge, Computer Laboratory, June 2002. http://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-536.pdf

J. M. Soden, R. E. Anderson, and C. L. Henderson. IC failure analysis: Magic, mystery,
and science. IEEE Design & Test, 14(3):59-69, July 1997. http://portal.acm.org/
citation.cfm?id=622765

F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.-J. Quisquater. Differ-
ential power analysis of FPGAs : How practical is the attack? In Field Programmable
Logic and Applications, pages 701-709, September 2003. http://www.springerlink.
com/content/1gvqbdy9x37v1d7x/

F.-X. Standaert, S. B. Ors, and B. Preneel. Power analysis of an FPGA implemen-
tation of Rijndael: Is pipelining a DPA countermeasure? In Cryptographic Hardware
and Embedded Systems Workshop, volume 3156 of LNCS, pages 30-44, August 2004.
http://www.springerlink.com/content/00ylcvw3rh7nwded/

F.-X. Standaert, S. B. Ors, J.-J. Quisquater, and B. Preneel. Power analysis attacks against
FPGA implementations of the DES. In Field Programmable Logic and Applications, pages
84-94, August 2004. http://www.springerlink.com/content/j6ru6h2a0jcwOvc3/
F.-X. Standaert, F. Mace, E. Peeters, and J.-J. Quisquater. Updates on the security of
FPGAs against power analysis attacks. In Reconfigurable Computing: Architectures and
Applications, volume 3985 of LNCS, pages 335-346, 2006. http://www.springerlink.
com/content/d38271pw36628hlir

F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater. An overview of power
analysis attacks against field programmable gate arrays. Proceedings of the IEEE, 94(2):
383-394, Febuary 2006. http://ieeexplore.ieee.org/iel5/5/33381/01580507 .pdf
M. Stigge, H. Plotz, W. Miiller, and J.-P. Redlich. Reversing CRC — the-
ory and practice. Technical Report SAR-PR-2006-05, Humboldt University
Berlin, May 2006. http://sar.informatik.hu-berlin.de/research/publications/
SAR-PR-2006-05/SAR-PR-2006-05.pdf

G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and
secret key generation. In Design Automation Conference, pages 9-14, 2007. http://
people.csail.mit.edu/devadas/pubs/puf-dac07.pdf

[Hardware Ciphers], Synaptic Laboratories Ltd., November 2006. http://www.
hardware-ciphers.com

P. Syverson. A taxonomy of replay attacks. In Computer Security Foun-
dations Workshop, 1994. http://chacs.nrl.navy.mil/publications/CHACS/
1994syverson-foundations.pdf

The A5 cracking project, September 2007. http://wiki.thc.org/cracking_ab

A. Thompson. Hardware evolution page, February 2006. http://www.cogs.susx.ac.uk/
users/adrianth/ade.html

A. Thompson and P. Layzell. Analysis of unconventional evolved electronics. Commu-
nications of the ACM, 42(4):71-79, 1999. http://portal.acm.org/citation.cfm?id=
299174

K. Thompson. Reflections on trusting trust. = Communications of ACM, 27(8):
761-763, 1984. http://www.cs.washington.edu/education/courses/cse590s/02sp/
Reflections.pdf

K. Tiri and I. Verbauwhede. Synthesis of secure FPGA implementations. In International

49

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://portal.acm.org/citation.cfm?id=622765
http://portal.acm.org/citation.cfm?id=622765
http://www.springerlink.com/content/lgvq5dy9x37v1d7x/
http://www.springerlink.com/content/lgvq5dy9x37v1d7x/
http://www.springerlink.com/content/00ylcvw3rh7nwded/
http://www.springerlink.com/content/j6ru6h2a0jcw9vc3/
http://www.springerlink.com/content/d38271pw36628h1r
http://www.springerlink.com/content/d38271pw36628h1r
http://ieeexplore.ieee.org/iel5/5/33381/01580507.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05.pdf
http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05.pdf
http://people.csail.mit.edu/devadas/pubs/puf-dac07.pdf
http://people.csail.mit.edu/devadas/pubs/puf-dac07.pdf
http://www.hardware-ciphers.com
http://www.hardware-ciphers.com
http://chacs.nrl.navy.mil/publications/CHACS/1994syverson-foundations.pdf
http://chacs.nrl.navy.mil/publications/CHACS/1994syverson-foundations.pdf
http://wiki.thc.org/cracking_a5
http://www.cogs.susx.ac.uk/users/adrianth/ade.html
http://www.cogs.susx.ac.uk/users/adrianth/ade.html
http://portal.acm.org/citation.cfm?id=299174
http://portal.acm.org/citation.cfm?id=299174
http://www.cs.washington.edu/education/courses/cse590s/02sp/Reflections.pdf
http://www.cs.washington.edu/education/courses/cse590s/02sp/Reflections.pdf

Workshop on Logic and Synthesis, pages 224-231, 2004. http://eprint.iacr.org/2004/
068.pdf

[113] S. Trimberger. Trusted design in FPGAs. In Design Automation Conference, June 2007.
http://videos.dac.com/44th/papers/1_2.pdf

[114] P. Tuyls, G.-J. Schrijen, B. Skori¢, J. van Geloven, N. Verhaegh, and R. Wolters.
Read-proof hardware from protective coatings. In Cryptographic Hardware and Embed-
ded Systems Workshop, volume 4249 of LNCS, pages 369-383, October 2006. http:
//www.springerlink.com/content/8454587207415662/fulltext.pdf

[115] Ulogic FPGA netlist recovery, October 2007. http://www.ulogic.org

[116] High performance microchip supply, United Stated Department of Defense, February 2005.
http://wuw.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf

[117] Altera Corporation vs. Clear Logic Incorporated (D.C. No. CV-99-21134), United States
Court of Appeals for the Ninth Circuit, April 2005. http://www.svmedialaw.com/
altera’,20v%20clear’,20logic.pdf

[118] Virtual Socket Interface Alliance. SoC standards leader VSI Alliance announces plans to
close operations, July 2007. http://www.vsia.org/news/vsia_plans_to_close.htm

[119] Virtual Socket Interface Alliance. February 2007. http://www.vsi.org/

[120] R. Wilson. Panel unscrambles intellectual property encryption issues, January 2007. http:
//www.edn.com/article/CA6412249 . .html

[121] R. Wilson. Silicon intellectual property panel puzzles selection process, February 2007.
http://www.edn.com/article/CA6412358.html

[122] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art implemen-
tations and attacks. Transactions on Embedded Computing Systems, 3(3):534-574, March
2004. http://portal.acm.org/citation.cfm?id=1015052

[123] Xilinx Inc. http://www.xilinx.com

[124] Xilinx Inc. Processor peripheral IP evaluation, October 2007. http://www.xilinx.com/
ipcenter/ipevaluation/proc_ip_evaluation.htm

[125] D. Ziener and J. Teich. FPGA core watermarking based on power signature analysis. In
IEEE International Conference on Field-Programmable Technology, pages 205-212, De-
cember 2006. http://wwwl2.informatik.uni-erlangen.de/publications/pub2006/
zienerfpt06.pdf

About this document

This survey was written for two reasons. Firstly, I thought that a write-up that looks
at the topic as a whole is missing from the literature, especially one that may appeal to
design engineers; in many ways, I have written it to the engineer I was after starting my
first job out of university. Secondly, to serve as a basis for my research. I will keep adding
to this survey with new developments as they come and would appreciate comments and
welcome a discussion.

Version and date are indicated on the title page and the latest version can be found at:
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

Previous versions are available by adding _ddd before the .pdf in the file name, where
ddd corresponds to the version number. Links and BibTeX entries to all above references
and other related material are available at:
http://www.cl.cam.ac.uk/~sd410/fpgasec

50

http://eprint.iacr.org/2004/068.pdf
http://eprint.iacr.org/2004/068.pdf
http://videos.dac.com/44th/papers/1_2.pdf
http://www.springerlink.com/content/8454587207415662/fulltext.pdf
http://www.springerlink.com/content/8454587207415662/fulltext.pdf
http://www.ulogic.org
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.svmedialaw.com/altera%20v%20clear%20logic.pdf
http://www.svmedialaw.com/altera%20v%20clear%20logic.pdf
http://www.vsia.org/news/vsia_plans_to_close.htm
http://www.vsi.org/
http://www.edn.com/article/CA6412249.html
http://www.edn.com/article/CA6412249.html
http://www.edn.com/article/CA6412358.html
http://portal.acm.org/citation.cfm?id=1015052
http://www.xilinx.com
http://www.xilinx.com/ipcenter/ipevaluation/proc_ip_evaluation.htm
http://www.xilinx.com/ipcenter/ipevaluation/proc_ip_evaluation.htm
http://www12.informatik.uni-erlangen.de/publications/pub2006/zienerfpt06.pdf
http://www12.informatik.uni-erlangen.de/publications/pub2006/zienerfpt06.pdf
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.cl.cam.ac.uk/~sd410/fpgasec

Revision history:

v0.96
v(0.95

v0.94

v0.90
v0.60

2008-04-17
2007-12-06

2007-10-20

2007-10-10
2006-11-22

Editorial sweep throughout; slight editing to Section 5.1 on PUFs.
Added “System manufacturer” to principal list; revised Sec-
tion 3.2 on reverse engineering; shuffled “Attacks” section.
Added Section 5.3.1 on secure compiled code distribution; split
Figure 1 into two; changed bibliography to alphabetical order.
Document released on-line.

Submitted to “ACM Computing Surveys”; rejected 2007-08-25
(yes, 10 months later!)

o1

	Introduction
	Usage model
	Principals
	Design and manufacturing flow

	Attacks
	Cloning, overbuilding fraud, and mislabeling
	Reverse engineering the bitstream
	Open formats and hardware

	Readback
	Side-channels
	Power analysis attacks
	Electromagnetic emanation analysis
	Timing analysis

	Ionizing radiation
	Invasive and semi-invasive attacks
	Brute force, crippling, and fault injection
	Relay and replay attacks
	Social engineering

	Defenses
	Defense categories
	Bitstream encryption
	Key storage
	Key management
	Problems with encryption

	Design theft deterrents
	Watermarking and fingerprinting
	More bitstream encryption

	Ongoing research topics
	Physical unclonable functions
	Bitstream authentication
	FPGA digital rights management
	Secure processor-code distribution

	Physical isolation of cores
	Evolvable hardware
	Cryptographic algorithms: implementing and breaking

	Trust, adversaries, and metrics
	Trust in the flow
	System-level trust boundaries

	Adversaries
	Security levels of hardware modules

	Conclusion

