US007502815B1

a2 United States Patent 10) Patent No.: US 7,502,815 B1
Drimer 45) Date of Patent: Mar. 10, 2009
’
(54) TRUE RANDOM NUMBER GENERATOR AND OTHER PUBLICATIONS
METHOD OF GENERATING TRUE RANDOM
NUMBERS U.S. Appl. No. 10/717,047, filed Nov. 18, 2003, Lesea et al.
“Jitter Test Patterns”; IEEE Draft P802.3ae/D2.01, Annex 48A, Jan.
) . 15, 2001, pp. 1-3, Available from IEEE web address http://grouper.
(75) Inventor: ~Saar Drimer, Campbell, CA (US) ieee.org/groups/802/3/ae/public/jan01/taborek_ 2 0101.pdf or
. IEEE, 3 Park Avenue, 17th Floor, New York, NY 10016-5997.
(73) Assignee: XILINX, Inc., San Jose, CA (US) McNichol Tom; “Totally Random,” Issue 11.08m Aug. 2003, avail-

. able from Wired Digital Inc., at http://www.wired.com/wired/
(*) Notice: Subject to any disclaimer, the term of this archive/11.08/random__prhtml.

patent is extended or adjusted under 35 Rukhin, A., et al., “NIST Special Publication 800.22: A Statistical

U.S.C. 154(b) by 685 days. Test Suite for the Validation of Random Number Generators and
Pseudo Generators for Cryptographic Applications,” NIST, May 15,
(21) Appl. No.: 10/783,762 2001, pp. 1-153, Errata Sheet, 3 pages.

. .
(22) Filed: Feb. 20,2004 cited by examiner

Primary Examiner—Young T. Tse

(51) Int.CL (74) Attorney, Agent, or Firm—Walter D. Fields; Justin Liiu
GO6F 7/58 (2006.01)
GO6F 1/02 (2006.01) (57) ABSTRACT
(52) US.CL ..o 708/255; 708/250; 375/226;
713/503 A true random number generator may comprise a multi-
(58) Field of Classification Search 375/219, gigabit transceiver with a transceiver to receive a signal of

375/226, 371-373; 370/516; 702/69; 708/250, predetermined source data. Recovery circuitry of the trans-
708/251, 253, 255, 256, 272, 273; 713/502, ceiver may be operable to recover data from the received

713/503 signal. A controller may stress the recovery circuit to cause a

See application file for complete search history. port%on of the data recoyered to differ from the respective
portion of the predetermined source data. An extractor may

(56) References Cited define numbers for a true random number sequence based on

differences between the recovered data and the predeter-

U.S. PATENT DOCUMENTS mined serial source data over an interval of time. In a particu-

4,890,248 A * 12/1989 Reinhardt 702/191 lar example, the controller may influence at least one of the
5,633,816 A * 5/1997 Wallaceoovvvnnnn. 708/252 serial data transfer rate, the number of sequential same-state
5,732,138 A 3/1998 Noll et al. bits for the predetermined source data, and the stability of a
6,480,072 B1* 11/2002 Walshetal. 331/78 clock signal to be recovered by a portion of the recovery
7,020,791 B1* 3/2006 Aweyaetal. 713/400 circuit.
7,218,670 B1* 5/2007 Leseaetal. 375/226
2005/0193045 Al* 9/2005 Yamamoto etal. 708/250 33 Claims, 6 Drawing Sheets
376
5
378 Trans 380 50
Link 3
| 372
338
‘ | ¢ 373
|) - <
CLOCK |— pcm :364 N
‘ 366 392 396
| 360 X1 RXY (362 [772 N
361 ' Mem.|367 | k
I Mem. Recdvered | LK Cntr RN
> Clock, <4 > Gen
| @ | 4
1
| 37§ l |
~ |
I Control Bus 394
______ | Sample
| Host | | k=123..
| Programmer | |
b 390 g

U.S. Patent Mar. 10, 2009 Sheet 1 of 6 US 7,502,815 B1

4 |
trans-
* ° Jlceiver| °* °
+ * 1102
115)
. 1145
circuit) trans- -
ircui ;
»| ceiver -
processor
J core 11 8—\ 2 103
. 110 - Dl EE—
N trans-
ceiver
C112 —> >
2—1 04
programmable o
fabric 106 .
integrated circuit

FIG. 1 100

U.S. Patent Mar. 10, 2009 Sheet 2 of 6 US 7,502,815 B1
150
™|l & 154 | 158 1625 132
data | | ¢ i 2 z ™
| - TX
T—-r CRC |—{ encoder -i» FIFO [+ serializer (f o o .
136 ! ! 5 TX-
L
Z1 53 TX clock
generator
clock 140
2 } ?-1 60
5—1 86 5-1 76
163
- CRC 184 RX clock)
1 42§ A S_ generator -
channel bonding & (_
clock correction 5_1 74
178 -
RX t deserial]
data elastic 5_ c-cl)ﬁr:‘\/a - ccl;;ctzlg +R)! 4_34-
- _(buffer decoder < det recovery [Buffer I
138 ' (e
I{ < (1342 | X
182 ‘ 173 172
-
144_(loss of syn. 11 88 170
130

FIG. 2

US 7,502,815 B1

Sheet 3 of 6

Mar. 10, 2009

U.S. Patent

€ Old

Ws4
88¢ umop
43IMOd

_Auv" 06E |

| Jswweibold |
_ J1SOH _

AT
9|dweg
¥6¢ WS4 Xd sng [0:4U0) WS4 X1
8¢ v8e
wmm
v @D
us9 < L odio 4
<H :
v_ Nd) Joc | wow palanpoay Lot Wwap
Nd =5 - | L[oo
96¢ | 26¢ 99¢ c9t Xd 1oXL
// ﬂ\ .vwm" woa
1 w
02 89€ 5% M gyzn €€ ?
-OHHONAS
S
Y sun H
0S¢ | ERA
oge U gje
3
9.¢

MO01D

8¢ce

U.S. Patent Mar. 10, 2009 Sheet 4 of 6 US 7,502,815 B1

400

SEND 402
CONDITIONINGF—
PATTERN
L 404 _ _1__ - 416
STRESS L/ | Power-Down |
DATA | Power-Up |
L Cycle |
! -
108 CompARETO | 405
. REFERENCE DATA 414
* fr—~—

COUNT __ 406
DIFFERENCE(S)

M for Duration
Sufficient to Reach
Error Probability

Repeat for Plurality

of Frames to Extend
Range of Available
Random Numbers

Determine RN 410
Based on Error
Count(s)

FIG. 4

U.S. Patent Mar. 10, 2009 Sheet 5 of 6 US 7,502,815 B1

o A Jitter Characteristic Curve

Jitter/Error Probility

FIG. 5

U.S. Patent Mar. 10, 2009 Sheet 6 of 6 US 7,502,815 B1

|
|
| |
i |
! |
1 |
} |
! |
| |
|
| 508 |
! |
) i !
| RESET ! SEND SEND STRESS | |
|
! ' | PReamBLE —®| __ SEQUENCE I
! 611 | = Y _A06| |
AN 610 | 402 COUNT FRAM '
LN ! ERRORS :
! |
| | 407 :
1 Y i |
I 612 !
' |
WAIT |
o | | 412 - !
| | \2’ g N2 T~ |
| | - N S
l | ~ ~
|
| COMMA ON RX? ! *
|
l |
! DETERMINE RANDOM
614 | 410
i | \~" | NUMBER, BASED ON
o ! COUNT

REPEAT FOR
FIG. 6 622\ NEXT RN

k+1

US 7,502,815 B1

1

TRUE RANDOM NUMBER GENERATOR AND
METHOD OF GENERATING TRUE RANDOM
NUMBERS

FIELD OF THE INVENTION

The present disclosure relates to random number genera-
tors and methods of generating random numbers; and more
particularly to methods of generating random numbers using
a multi-gigabit transceiver (MGT).

BACKGROUND

Random numbers can be found in a variety of applications
within the engineering, technology, communication and com-
puting science fields. Typically, the random number genera-
tors of hardware and/or software realization may comprise a
pseudo-random generating embodiment that may use a seed
basis for generating the sequence. But these seed based
pseudo-random number generators can often result in an
increased risk of predictability, wherein knowledge of an
algorithm may offer an understanding of previous and future
generated numbers. Although pseudo-random number gen-
eration may be suitable for certain applications such as for
testing, because of its potential predictability, the pseudo-
random generation may be inappropriate for other applica-
tions such as cryptography.

For secure cryptography applications, it may be essential
that the security system implement a method for generating a
random number that is completely random. For such true
random number generator systems, a completely random
password or cryptographic key may offer no prior knowledge
that can be exploited or infiltrated by an adversary or mali-
cious intruder. Ideally, a true random number generator may
generate a sequence of numbers that is unpredictable, irre-
producible and non-repeating. Traditional true random num-
ber generators have generally used means such as radiation
decay, thermal noise or oscillator imperfections for purpose
of generating numbers of a random distribution.

These types of systems have typically used a form of cha-
otic system, one in which its state may change over time in a
largely unpredictable manner. Generally, some sensing
means may sense and convert the state of a system into a
sequence of, bits of, for example, a binary number. Previous
chaotic systems have included sources such as the sound of
radio static, the output of a noisy diode, or radiation decay.

A sensor can sense the noise event of the source and convert
it into a digital signal. A pseudo-random binary string can be
generated from the digital recording of static noise via a
digital microphone. A noisy diode can be sampled at a suit-
able frequency and converted into a digital signal. A Geiger
counter may sense the random decay of a radioactive source
to establish data for a binary string.

It may be noted, however, that problems may result from
the use of a chaotic system that is not completely random. For
example, there may exist certain inherent localities within the
system that may present a region of predictability. Such flaws
may make these systems undesirable, at least for the basis of
establishing secure cryptographic systems with unpredict-
able keys or encrypted bit streams.

Another disadvantage of some chaotic systems as a source
of randomness relates to their efficiency in generating a digi-
tal signal and numbers therefrom. Such efficiency limitation
may be overcome by use of pseudo-random number genera-
tors, which may deterministically generate a sequence of
numbers by some computational process from an initial num-
ber called a seed. Such computational process may generate a

20

25

30

35

40

45

50

55

60

65

2

sequence of numbers from the seed that may appear to be
random. In other words, an outside observer cannot predict
the next number to be generated from the list of numbers
previously generated without expending a great deal of com-
putational effort. Thus, to generate a long sequence of
pseudo-random numbers, one need only generate a single true
random number, which may be used as the seed for the
pseudo-random number generator.

Despite its predictability, pseudo-random number genera-
tion can find some favor given that it may afford simple
realizations. In contrast, customary embodiments for true
random number generators are typically more cumbersome
and perhaps incapable of realization in a self-contained
device such as a within a field programmable gate array. Some
have described the possibility of a “high-output generator that
can plumb mere disorder and extract true randomness—a
task, incidentally, beyond the reach of any computer on
earth”. See Tom McNichol, “Totally Random: How two math
geeks with a lava lamp and a webcam are about to unleash
chaos on the Internet,” Wired, issue 11.08 (August 2003). But
if a true random number generator were capable of simplified
integration and/or capable of realization within a self-con-
tained solution, then the true random number generator might
be more widely accepted within a greater variety of system
and/or process applications to offer devices of greater func-
tionality, smaller size and higher security.

Concerning such features of device size and functionality,
the semiconductor industry continually pushes for devices of
greater density and smaller geometries. At the same time, the
demand for increased data handling capability in combina-
tion with the desire for greater levels of integration has
increased the premium for signal interfacing to a semicon-
ductor device. Because of the reductions in I/O real estate,
circuit realizations that may offer ability for self-containment
within a semiconductor device can soften the I/O compromise
that would otherwise result from size reductions.

Easing some of the effects of reduced I/O real estate, some
manufacturers of high-speed data communication devices
have developed transceivers with parallel-to-serial and serial-
to-parallel data multiplexing/de-multiplexing circuit designs.
By using these multiplexing circuits, the high-pin count, par-
allel data interfaces may be replaced with lower pin count,
high-speed serial data interfaces. On a receiver side of a
transceiver, for example, a high-speed serial data sequence
may be received from an /O link and then converted into
parallel data of a slower clock rate. Conversely, on the trans-
mission side of the transceiver, parallel data of a low-clock
rate may be converted from the parallel format into a higher-
speed, serial format.

Thus, transceivers with parallel-to-serial and serial-to-par-
allel multiplexing/de-multiplexing circuits may be integrated
into data communication devices to enhance their data han-
dling capability. As a result, such transceivers have found
their way into various high-density, integrated circuits. Such
circuits may include data communication devices, data pro-
cessors, network modules, switchers, relays, gateways,
modems, and in particular highly integrated programmable
circuits, e.g., a programmable logic device (PLD) such as a
Field Programmable Gate Array (FPGA).

To assist resolution of data from a serial data input signal,
a clock recovery circuit of the transceiver may determine
transitions of the input data signal and control a frequency/
phase of a recovered internal clock in accordance with the
relative frequency/phase placements of the received data sig-
nal. It may be understood, however, that in order to keep the
frequency/phase of the internally recovered clock in synchro-
nous relationship to that associated with the incoming data

US 7,502,815 B1

3

signal, the data signal received may need to employ an encod-
ing/decoding protocol that can assure a sufficient number of
transitions over a given interval or duration for enabling
appropriate closed-loop control via the transitions of the
serial data signal.

Some of these encoding/decoding protocols (e.g., Ether-
net, Sonet, InfiniBand, Fibre Channel, etc.) may be described
as a form of “non-return to zero” encoding. In a particular
example, an 8-bit/10-bit (non-return to zero) protocol may
encode data to assure that only a limited number (5 bits) of
same-state data bits may occur consecutively within the data
stream. In other words, it may assure that, e.g., only five data
bits of same state (one or zero) may occur consecutively
within the serial data stream. Else, absent a sufficient fre-
quency of state transitions within the serial data signal, the
clock generator of a clock recovery circuit might begin to drift
or wander relative to the frequency/phase inherent within the
input data signal.

Further, it may be understood that the reliability of the data
recovery may depend upon the amount of drift/wandering, or
“jitter,” attributable to transceivers and associated clock
recovery circuits. In other words, the amount of wandering or
drift that may be inherent within the transceiver may impact
its jitter tolerance, which in turn may hinder its reliability with
higher speed data transfers. The lower the performance or
jitter tolerance, the lower its reliability and capability for
high-speed serial data transfer.

SUMMARY

In accordance with an embodiment of the present inven-
tion, the random error characteristics of a serial data trans-
ceiver, such as a multi-gigabit transceiver in a programmable
logic device, may serve as the basis for generating true ran-
dom numbers. The true random numbers might then be used
as seeds to a pseudo-random number generator. Errors from
the MGT may be counted and bits of the counter, such as the
lower bits, may drive synthesis for generation of the true
random numbers.

In further embodiments, a controller may stress the oper-
ability of the transceiver to influence an error rate for a greater
probability of errors. In some cases, the receiver of the trans-
ceiver may be exercised beyond its tolerance capabilities and
force to operate in a higher failure mode and to produce
random erroneous bit errors from the sampling of the input
data. The stress may comprise, for example, affecting the
pattern of the source data supplied to the receiver, increasing
the delay between the output of the source data and the receipt
by the receiver, attenuating the level of the serial input signal
to the receiver, and/or lowering the stability of reference clock
that may have been recovered by the receiver.

In further embodiments, influence of the error probability
may be adjusted dynamically so as to enable real-time control
(internally or externally) over the random number character-
istics for the sequence synthesis.

In a particular embodiment, a receiver of a serial data
transceiver within a programmable logic device may receive
a serial data signal, which may have been output with prede-
termined source data. A circuit of the programmable logic
device may link the output of the receiver and data recovery
circuit to a comparator. The comparator may compare data
recovered by the receiver to reference data to determine any
errors. These errors may be counted and the count values used
as the basis for generating a random number. In some embodi-
ments, the random number may be based on the number of
errors counted at a given time, the time from startup to first
error or the difference in time between consecutive errors. In

20

25

30

35

40

45

50

55

60

65

4

further embodiments, the receiver may be stressed during at
least a portion of the recovery of data from the received serial
data signal.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments and features of the present invention will
become more apparent from the detailed description and the
appended claims, with reference to the accompanying draw-
ings, in which:

FIG. 1 isasimplified block of diagram showing a program-
mable integrated circuit in accordance with an embodiment
of the present invention.

FIG. 2 is a blocked diagram showing an example of trans-
ceiver within a programmable logic device that may be used
to generate random numbers in accordance with an embodi-
ment of the present invention.

FIG. 3 is a blocked diagram showing a system for gener-
ating random numbers in accordance with an embodiment of
the present invention.

FIG. 4 is a simplified flow chart showing an exemplary
method for generating random numbers in accordance with
an embodiment of the present invention.

FIG. 5 is a graph showing a jitter characteristic curve useful
for describing a method of testing in accordance with an
embodiment of the present invention.

FIG. 6 is a flow chart showing another exemplary method
of generating random numbers in accordance with an
embodiment of the present invention, and showing some pro-
visions for synchronization.

DETAILED DESCRIPTION

Inthe following description, numerous specific details may
be set forth to provide an understanding of exemplary
embodiments of the present invention. It will be understood,
however, that alternative embodiments may comprise sub-
combinations of the disclosed examples.

Additionally, readily established circuits and procedures of
the exemplary embodiments may be disclosed in simplified
form (e.g., simplified block diagrams and/or simplified
description) to avoid obscuring an understanding of the
embodiments with excess detail. Likewise, to aid a clear and
precise disclosure, description of known processes—e.g.,
triggering, clocking, state-machine, programming proce-
dures—may similarly be simplified where persons of ordi-
nary skill in this art can readily understand their structure and
operations by way of the drawings and disclosure.

Referencing FIG. 1, an integrated system 100, such as a
programmable logic device (PLD), may comprise a plurality
of transceivers 102-104 to be interfaced with an embedded
programmable fabric 106. In one embodiment, program-
mable fabric 106 may comprise a portion of a field program-
mable gate array (FPGA). Processor core(s), such as proces-
sor core 110, can be optionally embedded inside
programmable fabric 106. Interface layer 112 may facilitate
communication between embedded processor core 110 and
fabric 106. Further referencing FIG. 1, a pair of paths 114-115
may interface transceiver 102 to processor core 110 through
interface layer 112. Likewise, in an alternative embodiment,
the functionality associated with the embedded processor
might just as easily be realized in the fabric of the program-
mable logic device.

Further referencing FIG. 1, auser may configure a plurality
of circuits in programmable fabric 106, which may also
include portions to communicate with transceivers 102-104.
For example, a circuit 118 of the programmable device may

US 7,502,815 B1

5

be coupled to communicate with transceiver 103. In particu-
lar embodiments, the transceivers (in addition to other logic
devices and programmable fabric 106) may be configurable.

To assist configuration of the programmable logic device, a
host programmer may include configuration data that may be
programmed into configuration memory of the program-
mable logic device and used to configure the programmable
resources of the device. Some of the configuration memory
cells may structure interconnects of the programmable fabric
106, while other configuration memory cells may be used to
configure transceivers (for example, 102-104). For example,
the configuration memory cells may comprise different por-
tions for configuring two separate transceivers, such as trans-
ceiver 103 separate from transceiver 104.

In accordance with particular embodiments of the present
invention, the host programmer may program data into the
configuration memory cells for interconnecting a first internal
block memory to a transmitter of a transceiver, and a second
internal block memory to a reference comparator. Other loca-
tions of the configuration memory cells may be used, e.g., to
define interconnects and busses within the transceivers. Such
selectable or programmable configurations might thereby
include or exclude various sub-components of the transceiver
that might otherwise be associated with the typical handling
of'data. Thus, a portion of the transceiver may be configured
by the configuration data of the host processor to control
operation of, for example, a clock recovery circuit, an elastic
buffer, a decoder, or a cyclic redundancy coder.

Referencing FIG. 2, an example of a transceiver 130 may
comprise serial output and input ports 132 and 134 to com-
municate with another device. Output port 132 may propa-
gate serial data of a differential output signal and input port
134 may receive serial data of a differential input signal.
Transceiver 130 may process the data that is to be exchanged
to/from internal circuits of an integrated system or data pro-
cessor via the transmitter and receiver data busses 136 and
138.

A plurality of clock signals (shown collectively along sig-
nal line 140) may support clocking of data at the transmitter
side of the transceiver such as at transmit buffer 162. At the
receiver side of the transceiver, a clock recovery circuit may
generate a tune signal for tuning a receiver clock generator for
use in driving receiver buffer 172. Transceiver 130 may fur-
ther comprise cyclic redundancy code (CRC) circuitry 186 of
known protocol provisions for operating a CRC status signal
142.

In one embodiment, the width of the data paths 136 and 138
may be independently configurable and can be selected to be
1,2, or 4 bytes. In other embodiments, the data paths 136 and
138 may have other widths.

Addressing the transmitter side 150 of transceiver 130,
data on data path 136 may be selectably (or optionally) pro-
cessed by a CRC generator 152. This CRC generator may
compute and insert known CRC, such as encoding of a 32-bit
CRC algorithm into data packets that are to be transmitted.

The resultant CRC encoded data may then be delivered to
a non-return to zero encoder 154. In one embodiment,
encoder 154 may comprise a known 8B/10B protocol
encoder. Although a specific example of “non-return to zero”
encoding may be disclosed for 8B/10B, it is understood that
other embodiments may comprise alternative protocols—
e.g., 64B/66B or others, or any combinations thereof. Return-
ing to the particular example, the 8B/10B code may use 256
data characters and 12 control characters such as those that
may be used in the Gigabit Ethernet, XAUI, Fibre Channel,
and InfiniBand protocols. Such encoder may accept 8 bits of
data along with a K-character signal for a total of 9 bits per

20

25

30

35

40

45

50

55

60

65

6

character applied. If the K-character signal is “High”, the data
will be encoded into one of the 12 possible K-characters
available in the 8B/10B code. If the K-character input is
“Low”, the 8 bits will be encoded as standard data.

The encoded data may then be delivered to a transmit FIFO
buffer 156 and then to serializer 158. A clock of the internal
system may drive operation of the encoder 154 and a higher
frequency clock of clock generator 160 may drive serializer
158 and transmit buffer 162. In some embodiments, these two
clock signals may be frequency locked. Although frequency
locked, the two clock signals may have different relative
phase relationships. Accordingly, transmit FIFO buffer 156
may be operable to absorb phase differences between the two
frequency-locked clock signals.

FIFO buffer 156 may deliver data to serializer 158, which
may then multiplex and convert the parallel data into a serial
bit stream. Transmit buffer 162 may then drive the differential
lines of output port 132 with the serial bit stream.

Turning now to the receiver side 170, transceiver 130 may
further comprise a receiver clock generator 176 that may
generate (e.g., recover) a reference clock for driving certain
parts of the receiver. Receive buffer 172 may buffer the serial
data of an input signal received from differential lines of input
port 134. A clock-data recovery circuit 173 may receive the
buffered data and serial data associated with the input signal.
It may also recover a clock based on transitions of the data
signal to establish a frequency and phase thereof correlated
with the frequency and phase of the incoming serial data. This
recovered clock may then be used for detection and recovery
of the data for presentment to deserializer 174, decoder 178
and elastic buffer 182.

Deserializer 174 may convert data of a serial bit format into
parallel digital data. In a further embodiment, deserializer
174 may also perform comma detection. In some decoding
algorithms, (such as ofthe 8B/10B protocol), a “comma’” may
be used as a distinguishable pattern by which to assure deter-
mination of the byte boundaries and frames within the serial
data. For example, two comma patterns of known 8B/10B
protocol may comprise a comma “plus” and a comma
“minus”. Detection of a comma may then define the byte
alignments within the received serial bit stream. In one
embodiment, programmable cells of the configuration
memory may establish the control signals to control whether
the comma detection circuit is to realign the byte boundaries
on comma plus, comma minus, both, or neither.

In exemplary operation, decoder 178 may receive data
from deserializer 174. When enabled, it may decode and, in
accordance with its selected configuration, raise a synchro-
nous “comma” flag (as a status bit to be attached to each
received byte at the transceiver’s programmable fabric inter-
face) on comma plus only, comma minus only, both, or nei-
ther. In further embodiments, it may set this flag for valid
commas only.

Upon leaving decoder 178, the decoded data may be sent to
an elastic buffer 182. Elastic buffer may perform channel
bonding and clock correction as driven by clock correction
controller 184. Elastic buffer 182 may be configurable for
various configuration options such as:

(a) use or bypass;

(b) enablement of clock correction; and

(c) levels to signal overflow or underflow conditions.

Configuration options might also include choice of channel
bonding modes, the selection of a selectable number of chan-
nel bonding sequences, establishing a selectable length for
matching a selectable byte value (8-bit or 10 bit), and similar
provisions for clock correction sequences.

US 7,502,815 B1

7

After re-synchronization by the elastic buffer, the data may
then be delivered to an internal system, such as the program-
mable fabric, across data bus 138, which may be programmed
fora 1, 2, or 4 bytes width.

In further embodiments, the transceiver may also comprise
an elastic buffer 182 that may be optionally connected to a
known CRC verification block 186. This block may, for
example, verify that the commonly used 32-bit cyclic redun-
dancy code appears at the end of the received data packets. A
signal may then be delivered to the internal system on line 142
to indicate the CRC verification.

Transceiver 130 may further comprise a loss of synchroni-
zation detector 188. It may interpret outputs of comma detec-
tor 174, decoder 178, and elastic buffer 182 to determine
whether the incoming bytes of the data stream are in synchro-
nization. A signal may then be delivered to the programmable
fabric on line 144 to report the synchronization status.

Again, for a programmable logic device, the configuration
information for configuring the transceivers may be stored in
known programmable configuration memory.

Accordingly, a user may select different options for the
programmable logic device based on the configuration data
provided to the FPGA.

Although showing the most important signals and sub-
components of the transceiver for assisting understanding of
the present invention, it will be understood that there may also
be other signals and sub-components to the transceiver.

The integrity of data detection and recovery within a trans-
ceiver may depend to a great extent upon the jitter perfor-
mance associated with the transceiver. For example if a seri-
alizer and transmit buffer add jitter to a data communication
signal, then a receiver receiving that signal may incorrectly
detect zero data as a one, or conversely one data as a zero.
Similarly, if the receive buffer of a receiver contributes noise
to the received input signal, then again data errors may result.
Accordingly, the jitter performance of a high-speed trans-
ceiver within a device, such as a field programmable gate
array, may determine its reliability for serial data transfer
applications. Further, it may comprise different error prob-
abilities with different serial data transfer rates—e.g., 3.125
Gbs per second vs. 2.5 Gbs per second.

Processes for testing the performance of transceivers may
use various test patterns such as the X AU jitter test standards
of'the IEEE (see draft to IEEE standard 802.3, annex 84 of,
IEEE draft P 802.3a¢/D2.01, Jan. 15, 2001, discussing vari-
ous test patterns and procedures of the X AUI jitter working
group). In some cases, the methods for testing transceivers
may generate and apply the test patterns to a transmitter
channel, while logging recovered data received by the
receiver channel. Reliability might then be determined based
on subsequent analysis of the logged data relative to the initial
test patterns.

In the fields of microwave digital communications, micro-
wave digital radios, cell phones, optical devices, and wire-
line digital interfacing, procedures disclose testing commu-
nication units in regions of enhanced error probability.
Borrowing from these fields and recognizing certain prin-
ciples of error probabilities associated with serial data
receiver embodiments, the present disclosure proposes meth-
ods and systems for generating random numbers that can take
advantage of some of these recognized features.

Referencing FIG. 3, in accordance with an embodiment
with the present invention a programmable logic device 350
may comprise transceiver 364 (which may be similar to trans-
ceiver 130 of FIG. 2) coupled with other programmable ele-
ments for exercising and/or stressing its jitter capability. A
digital clock manager 372 may receive a signal from an exter-

20

25

30

35

40

45

50

55

60

65

8

nal source 338, and be programmed for generating an internal
clock having a frequency useful for driving certain internal
logic of the programmable logic device 350 vialine 373. Ina
particular example, the external source 338 may supply a
frequency of 50 MHz and the digital clock manager 372 may
be configured to synthesize an internal operating frequency
of, for example, 156.25 MHz. Further, the digital clock man-
ager may comprise an internal phase lock loop for locking and
controlling its frequency relative to the frequency of the exter-
nal source. For assisting an understanding of certain prin-
ciples of the present invention, an internal operating fre-
quency of 156.25 MHz may be assumed along with a 20 bit
width for data words supplied to the serializer 158 (FIG. 2)
associated with the transmission channel of the transceiver
364. The output signal produced on serial output 378 might
thus comprise a data transfer rate of up to 3.125 Gbs (20 bits
x156.25 MHz). Although particular examples may be
described with certain frequencies herein to assist an under-
standing of the present invention, it will be understood that
the frequencies and data transfer rates might be other than the
50 MHz external (or in some cases internal) source, the
156.25 MHz internal frequency and the 3.125 Gbs data trans-
fer rate used in the examples. Further, alternative methods and
embodiments may substitute the internal clock manager with
an internal frequency synthesis unit.

Further referencing FIG. 3, state machines 382, 384 can
provide known operable control along internal control busses
that may be configured to assist access of first and second
block memories 360, 362. The transmitter state machine 384
may be configured to sequence the address map of first block
memory 360 in order to retrieve predetermined test data pre-
viously stored within the memory, which can be propagated
by transmitter data bus 361 to the input of the transmitter. On
the receiver side, the receiver portion of the transceiver may
operate to recover data. The receiver state machine 382 may
control indexing within the address map of second block
memory 362 by which to retrieve sequences of reference data
for comparison by comparator 368 relative to the data recov-
ered. Digital clock manager 372, which provides an internal
clock, may drive the transmitter state machine, while the
receiver state machine 382 may be driven by a recovered
clock.

Power-down state machine 388 can be used to assist power
cycling and initialization of circuits within the programmable
logic device 350, which can assist certain optional procedures
of performance testing and/or the jitter variation.

Synchronizing state machine 386 can determine when a
known framing event has been detected by the receiver and
may establish an offset for an index into the address map of
the second block memory 362 relative to the index for access-
ing the first block memory 360. With an appropriate offset,
reference data sequences retrieved may correspond to those
of the predetermined test data that are expected from the
received data. In other words, the synchronization state
machine can fix an offset between the different indexes of the
block memory 360 on the transmitter side and the block
memory 362 on the receiver side so as to effectively accom-
modate delays of the overall data communication channel.

Although particular embodiments are described above
with state machines that may sequence various operations of
the sub-modules, it may be understood that alternative
embodiments may comprise, e.g., an embedded processor for
performing these operations. Such internal processors may be
programmed with machine-readable instructions that when
executed may perform procedures as may be disclosed herein
relative to the state machines.

US 7,502,815 B1

9

Referencing FIGS. 2 and 3, delays of the data communi-
cation channel may include those of FIFO registers 156,
serializing multiplexer 158, and transmitter buffer 162 on the
transmitter side; delays of the transmission link 376 (or inter-
nal link 163) between the transmitter output 132 and the
receiver input 134; and delays of receive buffer 172, clock-
data recovery circuit 173, de-serializing/de-multiplexer 174,
decoder 178 and FIFOs or elastic buffers 182 on the receiver
side. Each of these elements associated with the transceiver
can contribute to the overall latency (propagation delay)
between the moment data is presented by first block memory
360 to interconnect 361 for transmitter input 136 and the
moment it may be recovered at the receiver’s output 138 and
provided over interconnect 365 to comparator 368. It may be
noted that each of these same elements may be similarly
capable of contributing an accompanying jitter component
that may accompany their respective delay duration. Assum-
ing identical data contents of the first and second block
memories 360 and 362, the index into the address map of the
second block memory for retrieval of the reference data may,
therefore, be understood to require an offset (of perhaps mul-
tiple frames) relative to the indexing into first block memory
for compensating transmission FIFOs, multiplexers, de-mul-
tiplexers, receiver FIFOs and buffers, elastic buffers, etc. and,
in general, to correlate appropriately the retrieval of the ref-
erence data relative to data recovered by the receiver.

In one embodiment for a method of operating the trans-
ceiver for jitter effects, referencing FIGS. 3-5, first and sec-
ond block memories 360 and 362 may be previously pro-
grammed with substantially the same identical internal data.
First memory block 360 may be programmed with first (e.g.,
test) source data that may be retrieved and transmitted to the
transmitter portion of the transceiver. Second memory block
362 may be programmed with reference data that may be the
same as the predetermined source data and may be retrieved
with the previously described relative offset for allowing the
correlated/delayed presentation to comparator 368. In a par-
ticular embodiment, transmitter data bus 361 may comprise a
width (e.g., 20 bits) for propagating words of parallel bit
format from the memory to the transmitter. Likewise, the
second block memory 362 may be coupled via bus 367 to the
reference port of the comparator 368 using an interconnect
width (e.g., 20 parallel bits) corresponding to that of the
receiver’s data bus 365.

A host programmer 390 may be operable to program con-
figuration memory of the programmable logic device to con-
figure its various modules, including those of transceiver 364,
and may be further operable to configure the transceiver in
coupled relationship to memory blocks 360, 362 and respec-
tive configurations for state machines 382, 384, 386 and 388,
digital clock manager 372, comparator 368, and counter 366
as illustrated by the example in FIG. 3. The host programmer
may further configure data sequences that may be stored into
the first and second block memories 360 and 362 for their
respective source and reference data.

Upon initiating a method 400 for random number genera-
tion, further referencing FIGS. 3-4, data words of the prede-
termined source data may be retrieved sequentially from first
memory block 360 and output (e.g., 20 parallel bits at a time)
to transceiver 364. Turning to FIG. 2, the transmitter 150 may
receive the parallel data on its input data bus 136 and may
process the data for serial output at output 132. In embodi-
ments of the present invention, selectable or configurable
encoders 153—such as those for error redundancy (cyclic
redundancy coder 152) or non-return to zero encoding (en-
coder 154)—may be configured by host programmer 390 to
be selectively bypassed within the transmission channel. In

20

25

30

35

40

45

50

55

60

65

10

such configurations, data words received from the first block
memory can be propagated directly to FIFO registers 156 and
serializing multiplexers 158. Accordingly, stress sequences
of, e.g., same-state data may be transmitted directly from the
block memory for transmission. By such configuration, the
stress sequence may comprise durations substantially longer
than the run-lengths that would otherwise be provided per the
typical encoding circuits.

In a particular embodiment, the host programmer may
configure the predetermined source data to comprise a con-
ditioning preamble followed by a stress sequence. Therefore,
when retrieving contents of the first block memory during the
method of random number generation, a conditioning pre-
amble may be sent (step 402) to the transmitter followed by
(step 404) the stress sequence.

Data serialized may then be transmitted to the receiver of
the transceiver. In a particular embodiment, transmission line
376 of predetermined delay may propagate the signal from
the transmitter output 378 to the receiver’s input 380. Assum-
ing words comprising a width of 20 bits from first block
memory and assuming an internal clocking frequency of
about 156.25 MHz, a serial data transfer rate (between the
transmitter and receiver) may be established at about 3.125
Gbs. To assist some customary methods of jitter performance
testing, and to provide flexibility for optional selectable alter-
natives that may accompany some of the embodiments of the
present invention, the transmission line 376 may provide an
electrical delay sufficient to enhance certain forms of jitter to
affect bit error rate (BER) or probability. In one example, the
transmission line may be configured with an electrical length
greater than five wavelengths (5x) of the frequency associated
with the rate of serial data transfer. For a serial transfer rate of
3.125 Gbs, e.g., the transmission line might thus comprise a
transmission line structure on an FR-4 substrate (PC board) of
about 20 inches physical length. Although a system for ran-
dom number generation might be configured in this fashion
with transmission line 376 to affect jitter parameters, in accor-
dance with some embodiments of the present invention, such
external interconnect can be omitted.

Further referencing FIG. 2, for a self-contained embodi-
ment, for example, the host programmer of a system for true
random number generation may program configuration
memory of the programmable logic device 130 to configure
an internal link 163 (e.g., via resources of the programmable
fabric of the programmable logic device) to couple between
the output of transmitter buffer 162 and the input of the
receiver buffer 172. With such link configured within pro-
grammable logic device 350, the true random number gen-
eration may be realized conveniently, self-contained from
within the device.

Affecting some of the jitter characteristics on the receiver
side, clock recovery circuitry (173 FIG. 2) may recover a
clock based upon transitions of the data input signal. In a
particular embodiment, the clock recovery circuit may com-
prise a phase lock loop for locking a frequency/phase of the
receiver’s clock generator 176 relative to the frequency/phase
accompanying the transfer rate of the received input signal.
As input transitions are received, the time relative placements
thereof may be compared with respect to transitions of the
recovered clock for generating a phase error signal. The phase
error signal might then be used to generate a feedback control
signal for correcting the frequency/phase of the recovered
clock. During a preamble sequence of the serial data associ-
ated with the received serial signal, repetitive data state tran-
sitions can assist tight closed-loop control of the frequency/
phase of the receiver’s clock generator. Following the
preamble conditioning, however, a stress sequence may

US 7,502,815 B1

11

present same-state data over an extended time lapse. Absent
the repetitive signal transitions of the input signal, the phase
lock loop may essentially leave the clock generator of the
receiver free-running. Relative to FIG. 5, this may be effec-
tively viewed or modeled so as to shift the operational sam-
pling transitions within the data detector circuitry 173 into
time-lapse, stress regions 558-556 along a jitter characteristic
curve 552 of greater jitter of error probability.

In accordance with one embodiment of the present inven-
tion, a run-length ti may be determined along a time interval
554 of the jitter characteristic curve 552 for a typical trans-
ceiver device and the run-length selected to extend the data
recovery provisions of the receiver into an error probability
growth region. The determination may be performed by logic
pre-configured within the fabric of the programmable logic
device, or the determination may be performed by a processor
external or internally embedded with the programmable logic
device.

The growth region of the jitter characteristic curve may be
known as a “waterfall” or “avalanche” zone. When working
within such “waterfall” zone, the receiver’s data recovery/
detection circuitry may perform with a bit error rate of, e.g.,
about one to two bit-errors per frame sequence or higher. In
particular embodiments, the stress sequence for the predeter-
mined source data may be configured based upon the desired
run-length determination. In a particular embodiment, a host
programmer may configure the stress sequence with 400 con-
secutive zeros, which may be programmed into the first
memory block. It may be understood, however, that alterna-
tive embodiments may comprise values or patterns other than
400 consecutive same-state data and may also extend the
run-length beyond the maximum lengths typically specified
by a non-return to zero protocols (e.g., 8B/10B encoding
protocol).

In a further embodiment, the preamble preceding the stress
sequence may be configured for a low stress sequence such as

1-1-0-0-1-1-0-0- . . . or

1-1-1-0-0-0-1-1-1-0-0-0- . ..

Such a sequence may have a sufficient number of transitions
to enable the clock recovery circuit to acquire lock for syn-
chronizing frequency and phase, but may have a frequency
less than the high frequency transition rate of a sequence such
as 1-0-1-0- . . . , which might overburden edge detection
circuits associated with preliminary clock recovery opera-
tions for acquisition. The low-stress pattern for the data may
be sustained sufficiently for a plurality of data frames suffi-
cient to establish a stable operating condition of the trans-
ceiver before launching into the stress sequence of the source
data. For example, the conditioning pattern may comprise a
low-stress, alternating sequence for pairs of ones and zeros
for duration of 200 frames (e.g., 4000 sequential bits). This
value may be altered in alternative embodiments, so long as it
may establish a conditioning duration to allow settling of
clock recovery circuit dynamics and settling of other control
loops as may be associated with modules of the receiver
circuitry, e.g., deserializer 174 and elastic buffer 182, in the
transceiver.

Continuing with further reference to FIGS. 3-4, after send-
ing the stress sequence and while receiving it at the receiver,
the recovered data may be directed to comparator 368. Cor-
responding sequences of reference data may be retrieved
from the second block memory 362 for comparison (step 405)
with the recovered data. If an error is determined by compara-
tor 368, the error may be counted (step 406) by counter 366.

The sending of the stress sequence, receipt, comparison
and error counting can be repeated for M iterations (steps 407,

20

25

30

35

40

45

50

55

60

65

12

408) and the counter 366 may obtain a cumulative error count
from the various repeats. In a particular embodiment, the
number of iterations (e.g., 1 from 1 to M) may be set to impart
an error probability per the jitter characteristics of the receiver
orreceiver’s clock recovery oscillator for a magnitude greater
than zero and less than one. In one example, a transmission
line of about 20 inches may be provided between the trans-
mitter and the receiver and a run length of about 400 same
state zeros or ones may be sufficient to reach an error prob-
ability growth region ofthe jitter characteristic curve. Assum-
ing 20 bits per word comparison, M would correspond to 20
(i.e., 400/20) for assuring 20 iterations of the stress, compare,
and count (steps 404, 405, 406) per iterative repeats 407.
Assuming a 156.25 MHz internal operating frequency and
word comparison rate, the overall run-length would corre-
spond to about 128 ns (20%(1/156.25 MHz)).

In an alternative example per the particular assumed error
probability region desired from a jitter characteristic curve,
the transmission length may be extended from 20 inches to 80
inches and the run length might be reduced to less than 400
Zeros/ones.

In yet another example, the embodiment may be self-con-
tained with a link configured to couple between the transmit-
ter and the receiver, for example, within a programmable
logic device. For such example, 1000 same-state data might
then be provided for the stress sequence of the serial input
signal for establishing the run-length to reach the desired
error probability region of the previously assumed jitter char-
acteristic curve of the previous example. With 20-bit words
per comparison, M would correspond to 50 (i.e., 1000/20 bit
words) and the run length would be about 320 ns (50%(1/
156.25 MHz)).

Again, it may be noted that the number of zeros/ones
required may change from one system to another dependent
on the overall contributing parameters of each system. In one
system, the clock recovery circuit may comprise great stabil-
ity while in another, the stability may be degraded by noise,
noisy components, low quality oscillators of the clock recov-
ery circuit, etc. Accordingly, while M may be equal to 50 in
one example of an embodiment, it might be setto 75 or 80 in
other separate devices for reaching sufficient error probability
therefor by which to assure a given level of randomness for
the true random number generation.

Upon concluding M iterations with the stress sequence, the
whole sequence of iterations may be repeated. In some
optional procedures, the repeat may incorporate a power
cycle (step 416) (power-down and power-up of the trans-
ceiver) between the different runs. The power cycle may reset
circuits of the transceiver before launching into another stress
sequence. If using a power cycle, the procedure might again
synchronize the receiver clock recovery and reference data
offset using the preliminary preamble provisions. It might
then again proceed into the iterations of stress sequences,
comparison, counting (steps 404-408).

In particular examples, the power cycle may cause a phase
lock loop of the clock recovery circuit to release lock of the
receiver clock generator (176 FIG. 2). Upon power-up, the
phase lock loop may then restore its phase-lock condition and
may exercise an alternative lock condition. For some pro-
grammable logic devices, the phase lock loop may perform
differently for different lock states. Therefore, the repeats
with power-cycle can allow the phase lock loop to acquire
phase-lock at different relative lock placements, which in turn
can affect performance of the transceiver and overall error
probabilities for impacting the randomness associated with
generating the numbers of the true random number sequence.
Therefore, a plurality 412, 414, 416 of the overall stress runs

US 7,502,815 B1

13

N can be performed to impart breadth and variation from
different operating conditions into the randomness of the
accrued error counts. Upon completing the N overall itera-
tions, the error count from the counter 366 may be retrieved
and used to define (step 410) a number of a true random
number sequence.

In one example, a register 392 may read at least a portion of
bits 370 of counter 366—e.g., the least significant 8 bits—
which may be sampled after the N runs of the M stress
iterations. Sampling controller or source 394 may drive reg-
ister 392 with a strobe or clock edge to enable the register to
sample the selected bits ofthe counter. In a particular embodi-
ment, the sampling controller or source 394 may comprise a
signal of a serial interface, e.g., of an RS-232 controller. Such
controller could be either external or internal to the overall
integrated circuit device 350.

Sampling controller or strobe source 394 may provide a
sampling frequency much less than the frequency associated
with the M iterations of the stress sequence 404-408. With
sufficient duration between sampling events of sampling con-
troller 394, further variation or randomness may be imparted
to the outputs sampled from counter 366. In a particular
example for an RS-232 sampling embodiment, the sampling
frequency may comprise a frequency of about 19.2 kHz. It
may be noted that the period (T) associated with 19.2 kHz is
equal to 1/19.2 kHz or 0.052 ms. It may be noted further to
thus encompass a multitude of word comparisons—i.e., over
8000 word comparison and counts per sampling in the gen-
eration of the true random number sequence where the

#words=(1/19.2 kHz)/(1/156.25 MHz)=8125.

Although described in this example with a 19.2 kHz sam-
pling frequency, e.g., of an RS-232 serial interface, alterna-
tive embodiments may comprise a sampling frequency other
than 19.2 kHz while encompassing a multitude (e.g., hun-
dreds, thousands or tens-of-thousands) of word comparisons
per sampling. In a further embodiment, the RS-232 serial
interface may sample the least significant bit(s) of the
counter’s output.

In some cases, it may be desirable to increase the rate of
generation of the numbers for the true random number
sequence. For some of these, the pattern of the predetermined
source data may be changed to provide, e.g., a longer run-
length to obtain more errors per round of stress iterations. In
other embodiments, the serial data transfer rate may be
increased to stress the clock recovery capabilities and/or the
data resolution of the data detector. This similarly may have
the effect of increasing the number of errors per round of
stress iterations. In a further embodiment, the counter may
count the number of actual bit errors instead of the number of
words resulting in error determinations.

In another embodiment, a plurality of Multi-Gigabit Trans-
ceivers may be configured into separate respective true ran-
dom number generators, such as of those described previ-
ously relative to FIGS. 2-6. The numbers resulting from the
plurality may thus be integrated together into a true random
number sequence of greater frequency and greater number of
random numbers within the overall sequence.

In yet another embodiment, the error probability may be
further affected by attenuation of the serial data signal so as to
reduce the amplitude of the signal to be available at the
receiver. Further, the amount of pre-emphasis supplied by the
transmitter may be adjusted when outputting the serial data
signal. Each of these might also be adjusted to influence the
error probability and affect a desired performance level.

In one embodiment, further referencing FIG. 3, the bits
sampled from counter 366 may be latched into register 392
and may drive output 396 directly with the value of the

20

25

30

35

40

45

50

55

60

65

14

latched bits for the random numbers of the true random num-
ber sequence. In an alternative example, a timer may deter-
mine the amount of time required for the counter to reach a
certain threshold count. The variation in the timer values
might then serve as the basis for the random numbers to be
generated.

In an alternative embodiment, the bits sampled from the
counter may act as seeds to known seed based random num-
ber synthesis procedures. In such embodiments, the latched
values might thus be retrieved by, e.g., an embedded proces-
sor that may determine the numbers to a random number
sequence based on the retrieved random values for the seeds.
Although described in this example as being retrieved and
acted upon by an embedded processor, in alternative embodi-
ments, the sampled value may be delivered to logic circuits
that have been pre-configured within the fabric of the pro-
grammable logic device or to an external processor or system
for synthesizing the random number sequence based on the
generated seeds.

In a further embodiment of the present invention, referenc-
ing FIGS. 2, 3 and 6, a method 600 of generating random
numbers may (optionally) begin with a power-down and
power-up (power cycle step 602) of a multi-gigabit trans-
ceiver. After waiting (step 604) for a brief duration, a framing
event may then be placed (step 606) onto the transmitter’s
data bus 361. This framing event may be incorporated as part
of the predetermined test data, which may have been previ-
ously configured by the host processor and stored within the
first block memory 360. The framing event may be of a given
serial data transfer protocol, e.g., 8B/10B encoding protocol,
and can be disposed within the predetermined source data
before the stress sequence and before the conditioning pre-
amble. In the case of the 8B/10B protocol, the framing event
may comprise a comma.

Further referencing FIGS. 2 and 6, after placing the comma
on the transmitter bus 361, a reset 608 may be performed for
the transmitter and receiver to clear any queuing registers—
e.g., FIFOs 156 and elastic buffers 182 and data recovery
circuits 174, 178. The host processor may then monitor (steps
608, 610, 611) the protocol detection circuitry of deserializer
174 for detection (step 610) of a comma event (framing
event). If the comma has been detected at the transmission
side, the process may then proceed to determining (step 614)
a comma at the receiver. The wait (step 612) may first be
provided to account for propagation delays of the receiver
buffer 172, data-clock recovery circuit 173, and the deserial-
izer and decoder circuitry 174, 178. In some embodiments,
the wait duration may be set for as long as about 64 cycles.

Next, in further embodiments, a key may be submitted
(step 616) for transmission between the transmitter and the
receiver. The key may comprise an extended pattern (e.g., 80
bits or four frames of data) of little stress. This may assure that
the data can be transmitted through the communication chan-
nel, and also to locate relative indexes between the respective
first and second block memory addresses. Once the framing
and key events have been detected (step 618) at the receiver
side, synchronization state machine 386 (FIG. 3) may appro-
priately fix the offset between the index to the reference data
relative to that for retrieving the source data for placement on
the data bus for the transmitter. In the event the key data is not
recovered at the receiver, an error may be, reported (step 620).

Up to this level, the procedure may be viewed as having
established a first tier of operability—e.g., verifying the fun-
damental operations of the transmitter’s multiplexing and
transmission, and also the fundamental operations of the
receiver’s data recovery, de-multiplexing and frame/key
detection. Upon completing the synchronization adjustments

US 7,502,815 B1

15

and/or the phase lock loop acquisition, the method of random
number generation 600 may proceed with the procedures
402-416 as described previously herein with reference to
FIG. 4. Upon determining (step 410) a random number RN,
based on the number of error counts or the timing between
errors, the sequence may be repeated (step 622) for another
run and determination of another random number RN, , of
the sequence.

Further referencing FIG. 6, it may be noted that the loop
back 516, power cycle 602, and synchronization process 604-
620 may be optional. In some embodiments, these power
cycling and re-synchronizing provisions are not performed
between different groupings of the stress iterations. For some
of these, the preamble that precedes the stress sequence may
be sufficient to re-synchronize the clock recovery circuits of
the transceiver’s receiver and data recovery circuits.

In another embodiment of the present invention, a true
random number generator apparatus or method of an embodi-
ment described herein above may be used to assist signal
encryption. Numbers of a generated true random number
sequence may be used to encrypt a signal for secure transfer.
In a particular example, the numbers from the true random
number sequence may be used directly as the encryption key.
This sequence of numbers can be retained and sent to a
receiving station, where it may then serve as a decryption key.
In another embodiment, the numbers generated may be used
indirectly, e.g., as seed values, for driving an encryption or
decryption protocol. Having described a few cryptography
examples, it may be further noted that many cryptography
algorithms and methods may employ a true random number
generator and/or method as described above for use in gen-
eration of true random numbers so as to facilitate security of
encryption/decryption techniques and systems in accordance
with further embodiments of the present invention.

While certain exemplary features of the embodiments of
the invention have been illustrated and described herein,
many modifications, substitutions, changes and equivalents
may now occur to those skilled in the art. It is, therefore, to be
understood that the appended claims are intended to cover all
such embodiments and changes as fall within the spirit of the
invention.

I claim:

1. A true random number generator comprising:

a receiver to receive a signal comprising a predetermined

source data;

arecovery circuit to recover data from the received signal;

a controller to sufficiently stress the recovery circuit such

that at least a portion of the recovered data differs from

respective portions of the predetermined source data;
and

an extractor to define a random number based upon difter-

ences between the recovered data and the predetermined

source data,

wherein the extractor comprises:

a comparator to compare and determine errors between
the recovered data and reference data related to the
predetermined source data;

a counter to count the errors determined by the compara-
tor; and

a sampler to sample at least a portion of the bits of the
counter to define the random number.

2. The true random number generator of claim 1, in which:

the receiver and the recovery circuit comprise a clock

recovery circuit; and

the controller is operable to influence at least one of data

transfer rates of the signal directed to the receiver, a

number of sequential same-state data bits of the prede-

5

15

20

25

30

35

40

45

50

55

60

65

16

termined source data, and stability of the clock recovery

circuit for establishing the stress.

3. The true random number generator of claim 2, further
comprising:

a first memory to source the predetermined source data;

a data transmitter to receive the predetermined source data
from the first memory and output the signal comprising
the predetermined source data to the receiver; and

a second memory comprising the reference data to be sup-
plied to the comparator, the reference data substantially
the same as the predetermined source data.

4. The true random number generator of claim 3, wherein
the data transmitter and the receiver form part of a multi-
gigabit data transceiver embedded within a programmable
logic device, the programmable logic device comprising a
configurable link coupled between the receiver and the trans-
mitter.

5. The true random number generator of claim 1, wherein
the extractor defines the random number based on an interval
of time required to reach a predetermined number of difter-
ences between the recovered data and the predetermined
source data.

6. A true random number generator comprising:

a transceiver;

a jitter performance tester to exercise the transceiver with

predetermined data;

the jitter performance tester pre-configured to stress the
operability of the transceiver for increasing an error
probability of the transceiver; and

an extraction circuit to obtain a random number sequence
based on differences between the data resolved by the
transceiver and the predetermined data,

wherein the extraction circuit comprises a sampler to
sample at least a portion of an output of the jitter perfor-
mance tester.

7. The random number generator of claim 6, the jitter
performance tester to control at least one of the data of the
predetermined data and an associated data transfer rate to
influence the error probability.

8. The true random number generator of claim 6, in which:

the transceiver comprises a receiver to receive and recover
data from a data signal comprising the predetermined
data, and to format the recovered data into data words;

the jitter performance tester comprises:

a comparator to compare and determine differences
between the recovered data words and respective data
words associated with the predetermined data; and

a counter to count a number of differences determined
by the comparator; and

the extraction circuit to determine numbers for the random
number sequence based upon counts determined by the
counter over respective durations of the predetermined
data,

wherein the output of the jitter performance tester com-
prises bits of the counter.

9. The true random number generator of claim 8, in which
the duration associated with each count encompasses a plu-
rality of comparisons performed by the comparator.

10. The true random number generator of claim 8, in which
the transceiver, the jitter performance tester, and the extrac-
tion circuit are embedded within a programmable logic
device.

11. The true random number generator of claim 8, further
comprising first memory to source the predetermined data,
and second memory to source the respective data words of the
predetermined data to the comparator.

US 7,502,815 B1

17

12. The true random number generator of claim 11, in
which the transceiver further comprises a transmitter to
obtain data from the first memory and output the data to the
receiver.

13. The true random number generator of claim 12, further
comprising a RS-232 interface to sample at least a portion of
the counter, with a sampling rate less than a data transfer rate
of the transmitter.

14. The true random number generator of claim 8, in which
the extraction circuit is operable to define the random number
sequence based upon a number of bit differences determined
by the comparator.

15. The true random number generator of claim 8, in which
the extraction circuit is operable to define the random num-
bers based upon the respective durations required to produce
a predetermined number of difference counts as determined
by the comparator and the counter.

16. The true random number generator of claim 6, the
extraction circuit to enable the sampler once every counter
duration.

17. The true random number generator of claim 16, the
extraction circuit operable to control length of the durations.

18. A method of generating a random number, comprising:

providing first data based on reference data;

comparing the first data to the reference data and determin-

ing differences therebetween;

counting the differences determined;

sampling at least a portion of the counting over a duration;

and

defining the random number based on the sampling over

the duration,
wherein the first data is related to the reference data with an
error probability.

19. The method of claim 18, further comprising:

recovering data from a data signal; and

using the recovered data for the first data of the comparing;

the data signal comprising data substantially the same as

the reference data; and

the recovering comprising the error probability greater

than zero and less than 1.

20. The method of claim 19, further comprising influenc-
ing jitter performance of the data recovery.

21. The method of claim 20, in which the influencing of the
jitter performance comprises establishing at least one of
sequences of data for the data signal, a data transfer rate, and
stability of a clock recovery process associated with the data
recovery.

22. The method of claim 21, in which run length for a
sequence of same state data for the data is configured for a
duration sufficient to reach a waterfall region of a jitter curve
characteristic of the clock recovery process.

23. The method of claim 19, further comprising:

formatting the recovered data for the first data into word

format;

the comparing and counting comprising:

comparing words of the reformatted recovered data to

words of the reference data; and

counting a number of bit errors therebetween.

24. The method of claim 19, further comprising:

formatting the recovered data for the first data into parallel

format;

the comparing and the counting comprising:

comparing words of the reformatted data relative to
respective words of the reference data to determine
any differences therebetween; and

20

25

30

35

45

50

60

18

counting a number of comparisons yielding a difference
determination.

25. The method of claim 24, further comprising continuing
the counting for duration to encompass multiple word-to-
word comparisons for each random number defined.

26. The method of claim 25, further comprising defining
the random number as least significant bits of the number
counted.

27. The method of claim 26, further comprising:

encrypting a communication signal using a seed based

encryption key; and

forming the encryption key with seed values based on the

defined random numbers.

28. The method of claim 19, further comprising:

configuring predetermined source data within a first

memory to comprise a stress sequence of same-state
data;

defining a run-length for the stress sequence of same-state

data to extend over a stress duration;

retrieving the predetermined source data from the first

memory;

multiplexing words of the predetermined source data

retrieved from the first memory to convert the words of
the predetermined source data from a parallel formatted
data into a serially formatted data;

transmitting the serially formatted data;

receiving the transmitted serially formatted data as the data

signal;

retrieving the reference data related to the predetermined

source data from a second memory; and

storing the stress sequence as at least a part of the reference

data in the second memory.

29. The method of claim 28, further comprising:

storing conditioning data in the first memory as a preamble

before the stress sequence;
when receiving the preamble, using transitions of the con-
ditioning data to synchronize a recovered clock; and

after the synchronizing of the recovered clock with the
preamble and during an interval of time associated with
receipt of the transmitted stress sequence, performing
the retrieval of the reference data, the comparing, and the
determining and the counting of errors.

30. The method of claim 29, further comprising repeating
each of:

the retrieving, the multiplexing and the transmitting to

again transmit the preamble and the stress sequence;
the receiving of the transmitted, serially formatted data
corresponding to the preamble and the stress sequence;
the retrieving of the reference data, the comparing and the
determining and counting of errors; and

the counting to accumulate respective counts of the deter-

mined differences.

31. The method of claim 30, further comprising continuing
the repeating and count accumulations through the count
duration associated with the random number to be defined.

32. The method of claim 31, further comprising:

determining a time lapse for a predefined error probability

or jitter characteristic curve associated with clock recov-
ery of magnitude sufficient to reach a waterfall region of
the jitter characteristic curve; and

defining run-length of the stress sequence based on the

determined time lapse.

33. The method of claim 32, further comprising sampling
the accumulated count after a plurality of repeats.

#* #* #* #* #*

