
Securing SRAM FPGA designs –
in distribution and in operation

Saar Drimer
www.cl.cam.ac.uk/~sd410

Computer Laboratory

CryptArchi, 2 June 2008, Trégastel, France

www.cl.cam.ac.uk/~sd410

This talk is about SRAM FPGA security issues, but
mainly about distribution of designs

Outline:

• Use model – principals and how they interact

• A few attacks – reverse engineering, cloning, mislabeling, ...

• Cores and system protection

• A few solutions – encryption, authentication, ...

• Protecting many cores in a single FPGA design

Material is from “SRAM FPGA design security – a survey” and a
bit of new work

www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf 2/28

www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

Why are we concerned with FPGA security?

• Size and complexity: FPGA designs
require great investment, so

• system developers want ready-made
cores, but

• core vendors want to protect their
designs and control their distribution.

• Application space: security
attributes need to be investigated

Xilinx XC3020

Since 2000, FPGAs have ever more embedded functions that
previously required external devices; designing for modern FPGAs

requires specialization

3/28

Principals – FPGA vendors are risk averse, yet
aggressive

• Introduce a new family every 12-18 months

• Use aggressive architecture and technology to compete with
ASICs/ASSPs (and each other)

• Have an interest in helping their customers secure designs

• However, they will only introduce features that make financial sense

Design protection solutions require adoption by the FPGA vendors;
they must therefor be beneficial to their bottom line

4/28

Principals – two types of system developers concerned
with security

Cost-conscious:

• Achieve design goals at lowest cost; security is secondary

• Short term protection (months to a few years)

• Generally trusting (can’t afford not to be)

Security-conscious:

• Security is a priority; willing to pay for it

• Long term protection (years to decades)

• Distrusting: require proven primitives, rigorous audit of supply chain
and verification of design tools

In general, when we speak of system developers we think of
cost-conscious ones; no single solution will satisfy both

5/28

Principals – core vendors sell ready-made digital
functions

• Sell designs in HDL or netlist
form

• Currently, forced to use blanket
licensing arrangements

• Cannot enforce licensing terms
once core is handed off

• Common practice in industry is
to rely on risk perception and
agreements/contracts (“social
deterrents”)

6/28

Principals – the rest

• EDA vendor – software tools

• Foundry – fabricates the FPGA

• System manufacturer – manufactures the product

• System owner – whoever ends up using the system in the field

By necessity, some of these principals are considered trusted
parties

Of course, we shouldn’t forget

• Academics and hobbyists

7/28

Understanding the use model of FPGAs is a key to
evaluating its security properties

From birth to bin – the life-cycle of an FPGA and FPGA system

8a/28

Use model – an FPGA is born

FPGA design and manufacturing process is like an ASIC’s, except that the result
is a commodity reprogrammable device; many entities are involved in the

process

8b/28

Use model – an FPGA system is born and educated

Cores from different sources are combined into a single description of a digital
function, which is then distilled into a “bitstream” used to “program” the FPGA

8c/28

Use model – graduation

The system is manufactured, tested, packaged, and sent for distribution

8d/28

Use model – leaves the nest, but stays in touch

The system owner (“enemy”) has possession of the system, though the
developers can update the FPGA’s functions through “field reconfiguration”

8f/28

Design theft – a real problem

Cisco vs. “Chisco”

• “10 percent of all high tech products sold globally are counterfeit”

• “Chisco” – recently, US and Canada located/seized $76m worth of
counterfeit Cisco gear sourced from China; security implications can
be quite severe

• Cloning is happening for popular consumer products (network
equipment, TVs, etc.)

[Alliance for Grey Market and Counterfeit Abatement; FBI/DOJ] 9/28

Cloning, overbuilding and mislabeling

• Cloning – easy attack, considered most common security
vulnerability of SRAM FPGAs

• Overbuilding fraud – also easy, simply make more of the product,
sell ones that did not pass testing, or over-report failed system

• Mislabeling – modifying the marking on the package; buyer doesn’t
know until he programs the FPGA

• Speed grade mislabeling are especially hard to detect
• Maybe an open suite of test vectors can help?
• Easiest solution is to buy from an authorized distributor (not eBay)

10/28

Reverse engineering the bitstream

The transformation of an encoded bitstream into a functionally
equivalent description of the original design

Easy: extracting content from BRAMs and LUTs

• “ULogic FPGA netlist recovery” (they mean “placelist”)

Hard: inferring complete functionality for reuse

Partial reversal can reveal information as well

[Note and Rannaud] 11/28

Reverse engineering – what shall we do?

Given the high value of designs, incentives are right for attackers
to invest more in reverse engineering;

therefore, we should start moving away from design protection
schemes that rely on bitstream obscurity

• JBits API

• Open-source bitstream format (XC6200, Atmel FPSLIC)

[Megacz] 12/28

Design theft deterrents – rely on obscurity

The idea is to increase the difficulty bar of cloning

• First proposed by Kessner in 2000, now both Altera and Xilinx offer
similar reference designs

Through a challenge-response exchange with a non-volatile crypto device
on the same board, the bitstream can “authenticate” that it is operating

in the correct environment

Possibly working for now, but for how much longer?

13/28

Bitstream encryption – a good start

Now standard in high-end FPGAs: the bitstream is encrypted by the
software and decrypted by the FPGA using a user-defined key

Encryption only provides confidentiality while distributing
bitstreams, only protects whole bitstreams, and is not available for

low-end FPGAs

Encrypted bitstreams can still be manipulated

14/28

Bitstream authentication – a good idea

If encryption protects the bitstream in distribution, authentication
protects the correct and intended operation of the FPGA

Authentication provides entity identification and cryptographic
data integrity

• Since the FPGA doesn’t retain state, replay of old versions of the
bitstream is still a problem

• Relay attacks are possible as well; distance fraud can be an issue for
security applications

• Can provide role- and identity-based access control

Without extra devices (and tamper proofing), preventing
denial-of-service attacks is very difficult

[Parelkar and Gaj] 15/28

Authenticating without encryption can allow code audit
– a voting machine example

1 System developer programs authentication key into FPGA and sends
system to voting authority

2 Developer send HDL to authority for audit

3 Both run the code through the software flow under exact conditions

4 Authority programs the FPGA with the locally generated bitstream
with is authenticated using the MAC from the developer

[Drimer] 16/28

Two types of design protection

System protection:
protects designs from malicious users

Core protection:
protects designs from malicious users
and system developers

We already have “system protection” for some FPGAs; how can
we efficiently provide “core protection”?

17/28

What are we actually after?

An ideal distribution model will allow a
system developer to evaluate, simulate, and
integrate cores from multiple vendors while

1) core vendor is able to restrict each
instance to a particular FPGA and 2) the
cores’ confidentiality and authenticity are

assured

The scheme should be easy to use and deploy, cheap, and
relatively transparent to users; can we do it?

18/28

Most solutions to date deal with the vASSP problem or
“system protection”

ASSP: application specific standard product – a commodity ASIC
that performs a fixed set of functions (USB controller, MPEG encoder,

etc.)

Virtual ASSP: a single third-party core that occupies the entire
FPGA without contribution from the system developer

19/28

vASSP and compiled code distribution is only a small
subset of the “business”

• Kean, Bossuet et al., suggest “system protection” schemes

• Simpson and Schamont, Guajardo et al. deal with secure
microprocessor code distribution using PUFs

• Güneysu et al. uses the user logic and asymmetric crypto for key
establishment

However, the vASSP scenario (and processor code dist.) is...

• only a small part of the “core distribution business”, and

• already reasonably solvable by using bitstream encryption and
having the core vendor sell the FPGA to the developer
complete with an encrypted bitstream

20/28

We start with the vASSP scheme of Güneysu et al.

Key ideas:

• Maximize the use of the user logic

• Minimize additions to the configuration logic

• Use asymmetric key establishment between core vendor and FPGA

• Use a “personalization bitstream” encrypted under the FPGA
vendor’s symmetric key

Key Derivation Function using asymmetric cryptography:

KAB = KDF(SecretKA, PublicKB, data) = KDF(SecretKB, PublicKA, data)

[Güneysu, Möller, Paar: “Dynamic intellectual property protection for reconfigurable devices”] 21/28

Assumptions and requirements

Assumptions:

• Each FPGA has a unique
non-secret “FPGA ID” (FID)

• Bitstreams are authenticated and
encrypted

• PKI is used for certifying public
keys

FPGA vendor:

• Generates symmetric key KFPGA and asymmetric pair SKFPGA and
PKFPGA (for each individual or group of FPGAs)

• Creates “personalization bitstream” that contains SKFPGA

• Embeds key KFPGA into FPGA in an OTP keystore

[Güneysu et al.] 22/28

vASSP protection protocol

A. SETUP:

FPGA vendor system developer

EKFPGA
(PB)

FID, PKFPGA, PBKFPGA−−−−−−−−−−−−−−−−−→

FPGA vendor encrypts the personalization bitstream (PB) with KFPGA;
data is sent with the FPGAs

[Güneysu et al.] 23a/28

vASSP protection protocol

B. LICENSING:

core vendor system developer

FID, PKFPGA←−−−−−−−−−
KCV =

KDF(SKCV, PKFPGA, FID)

EKCV(CORE)
PKCV, COREKCV−−−−−−−−−−−−→

Both core vendor and system developer need to verify the certificates of
public keys in order to prevent decryption of cores or a “Trojan core”

[Güneysu et al.] 23b/28

vASSP protection protocol

C. PERSONALIZATION:

system developer FPGA

PBKFPGA−−−−−−→
E−1(PBKFPGA)

PKCV−−−−→
KCV = KDF(SKFPGA, PKCV, FID)

The FPGA generates KCV using the personalization bitstream and stores
it in a designated key-store

[Güneysu et al.] 23c/28

vASSP protection protocol

D. CONFIGURATION:

system developer FPGA

COREKCV−−−−−−−→
E−1(COREKCV)

The core is decrypted using KCV

[Güneysu et al.] 23d/28

vASSP protection protocol

A. SETUP :
FPGA vendor system developer
EKFPGA

(PB)

FID, PKFPGA, PBKFPGA−−−−−−−−−−−−−−−−−−→
B. LICENSING :

core vendor system developer
FID, PKFPGA←−−−−−−−−−

KCV = KDF(SKCV, PKFPGA, FID)
EKCV

(CORE)

PKCV, COREKCV−−−−−−−−−−−−−→
C. PERSONALIZATION :

system developer FPGA
PBKFPGA−−−−−−−→

E−1(PBKFPGA
)

PKCV−−−−→
KCV = KDF(SKFPGA, PKCV, FID)

D. CONFIGURATION :
system developer FPGA

COREKCV−−−−−−−→
E−1(COREKCV

)

Notice that the system developer only relays messages

[Güneysu et al.] 23f/28

Extension of the scheme – first, we will need more key
storage

The amount of key storage corresponds to how many cores we can
protect in a single bitstream

[Drimer, Güneysu, Kuhn, Paar] 24/28

Extension – changes to the design flow and bitstreams

By extending the vASSP solution, and using existing software tools and
small changes to the bitstream format, we could protect multiple cores

from multiple sources

[Drimer, Güneysu, Kuhn, Paar] 25/28

Evaluation of the many-core protection scheme

Advantages:

• Small, scalable and optional to developer (opt-in; otherwise ignore)

• Uses established primitives (no PUFs, RNGs required)

• Software is mostly there already (modular design, partial recon.)

• Configuration times are not affected much (unless volatile key
storage is used)

• Incentives are well aligned

26/28

Evaluation of the many-core protection scheme

Problems:

• Loss of optimization compared to HDL-level integration

• Implementation must be fault-tolerant and tamper resistant

• Limited simulation (use a crippled-version)

• System developer needs to trust the core vendor not to have
malicious code in the core

• Bandwidth may be an issue for large design exchanges

27/28

Conclusion: lots of work ahead!

We’ve covered only a small subset of the topic; lots more in the survey

Latest version of survey:
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

FPGA Design Security Bibliography:
http://www.cl.cam.ac.uk/~sd410/fpgasec/

My work and contact info:
http://www.cl.cam.ac.uk/~sd410/

[Picture: Sebastien D’ARCO, Creative Commons Attribution ShareAlike 2.5 License] Thanks!

http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.cl.cam.ac.uk/~sd410/fpgasec/
http://www.cl.cam.ac.uk/~sd410/

